
File No. 5360-25 (OS)
Order No. GY28-6638-2

IBM System/3S0 Operating System

FORTRAN IV (G) Compiler

Program Logic Manual

Program Number 360S-FO-S20

This publication describes the internal logic of the
FORTRAN IV (G) compiler.

Program Logic Manuals are intended for use by IBM
customer engineers involved in program maintenance, and
by systems programmers involved in altering the program
design. Program logic information is not necessary for
program operation and use; therefore, distribution of
this manual is limited to persons with program main
tenance or modification responsibilities.

The FORTRAN IV (G) compiler is a.processing program
of the IBM System/360 Operating System. It translates
one or more source modules written in the FORTRAN
language into an object module that can be processed
into an executable load module by the linkage editor.

Restricted Distribution

Program Logic

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and operation of the FORTRAN
IV (G) compiler. It is part of an inte~
grated library of IBM system/360 Operating
System Program Logic Manuals. Other publi
cations required for an understanding of
the FORTRAN IV (G) compiler are:

Principles of Operation, Form A22-6821

Introduction to Control Program Logic,
£~QgLam LQgic Manual, Form Y28-6605

Any reference to a Programmer's Guide
in this publication applies to FORTRAN
Iy-!~_~~d HL_Programmer's Guide, Form
C28-6811. The FORTRAN IV (G) Program
mer's Guide, Form C28-6639, (to which
references may exist in this publica
tion) has been replaced by the com
bined G and H Programmer's Guide.

Although not required, the following
publications are related to this publica
tion and should be consulted:

IBM System/360 Operation system:

Third Edition (December 1972)

concepts and Facilitie~, Form C28-6535

Supervisor and Data Management Macro
Instructions, Form C28-6647

Linkage Editor, Program Logic Manual,
Form Y28-6610

System Generation, Form C28-6554

This publication
sections:

consists of two

Section 1 is an introduction that
describes the FORTRAN IV (G) compiler as a
whole, including its relationship to the
operating" system. The major components of
the compiler and relationships among them
are also described in this section.

Section 2 consists of a discussion of
compiler operation. Each component of the
compiler is described in sufficient detail
to enable the reader to understand its
operation, and to provide a frame of
reference for the comments and coding supp
lied in the program listing. Common data
such as tables, blocks, and work areas is
discussed only to the extent required to
understand the logic of each component.
Flowcharts are included at the end of this
section.

Following Section 2, are appendixes that
contain reference material.

If more detailed information is
required, the reader should see the com
ments, remarks, and coding in the FORTRAN
IV (G) program listing.

This is a reprint of GY28-6638-l incorporating changes in Technical
Newsletters GY28-6826, dated November 15, 1968 (Release 17),
GY28-6829, dated July 23, 1969 (Release 18), and GY28-6847, dated
January 15, 1971 (Release 20).

Changes are periodically made to the specifications herein; any
such changes will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies 0f IBM publications should be made to your IBM
representative or tn the IBM branch office serving your locality.

Address corrunents concerning the contents of this publication to
IBM Corporation, Prograrruning Publications, 1271 Avenue of the Americas,
New York, New York 10020.

~ Copyright International Business Machines Corporation 1968, 1970

SECTION 1: INTRODUCTION TO THE COMPILER 9
Purpose of the Compiler 9
Machine Configuration 9
Compiler and System/360 Operating
system • • • • • • • • • • • 9
compiler Design • • • • • • 9
Limitations of the Compiler 9
compiler Implementation. • 10

POP Language • • • • • • • • • • • 10
Compiler Organization • • • • 10

Control Phase: Invocation (IEYFORT) 12
Phase 1: Parse (IEYPAR) •• 12
Phase 2; Allocate (IEYALL)
Phase 3: Unify (IEYUNF)
Phase 4: Gen (IEYGEN)
Phase 5: Exit (IEYEXT) •
Roll (IEYROL) •••••

Compiler Storage Configuration
Compiler Output •• • • • •

Object Module • • • • • • • •
Components of the Object Module
Object Module General Register

12
12
12
13
13
15
15
11
11

Usage • • • • • • • 20
Source Module Listing • • 20
object Module Listing • • • • 20
Storage Maps • • • • • • • • 21
Error Messages • • • • 21

Common Error Messages • • • • 21
Compiler Data Structures • • • • • • 21

Rolls ~nd Roll Controls 21
ROLL ADR Table • • • • • 22
BASE, BOTTOM, and TOP Tables 23
Special Rolls • • • • • 24
Central Items, Groups, and Group
Stats • • • • •

Other Variables

Arithmetic

• • 24
26
26
26

Answer Box • •
Multiple Precision
Scan Control • • • • 26
Flags • • • • •
Quotes • • •
Messages • • • •

Compiler Arrangement and General
Register Usage • •
Pointers • • • • • • •
Drivers •••••••

. . . .
Operation Drivers • ~ • • • • •
Control Drivers

SECTION 2: COMPILER OPERATION
Invocation Phase (IEYFORT)

21
• 21

21

• 28
29
30
30
31

33
33

IEYFORT, Chart 00 • • • • 33
I EYPRNT, Chart 00A4
PRNTHEAD, Chart 01A2 •
IEYREAD, Chart 01A4
IEYPCH, Chart 02A3 •
PRNTMSG, Chart 03A1
IEYMOR, Chart 0101 • •
I EYNOCR
IEYRETN, Chart 03A2
OPTSCAN, Chart AA
DDNAMES, Chart AB

33
34

• 34
34

• • • • • • 34
34
34
35

• 35
35

CONTENTS

HEADOPT, Chart AC
TIMEDAT, Chart AD

Output from IEYFORT • • • •

• 35
• 35
• 35

36 Phase 1 of the Compiler: Parse (IEYPAR)
Flow of Phase 1, Chart 04 ••••

PRINT and READ SOURCE, Chart BA
31

• • 31
STA
LBL FIELD XLATE, Chart BC • • • •
STA XLATE, Chart BD
STA FINAL, Chart BE
ACTIVE END STA XLATE, Chart BF
PROCESS POLISH, Chart BG •

")0
.JO

• 38
38

• 39
• 39

39
Output f rom Phase 1 t. • • • • • 39

Polish Notation • 39
Source Listing • • • • • • 42

Phase 2 of the Compiler: Allocate
(IEYALL) • • • • • • • • • • • • • • 44

Flow of Phase 2, Chart 05 • 45
ALPHA LBL AND L SPROGS, Chart CA •• 45
ALPHA SCALAR ARRAY AND SPROG,
Chart CA • • ••••••• 45
PREP EQUIV AND PRINT ER~ORS, Chart
CB • • •• • 45
BLOCK DATA PROG ALLOCATION, Chart
CC • • • • • • • • 46
PREP DMY DIM AND PRINT ERRORS,
Chart CD • • • • • • • • • • •
PROCESS DO LOOPS, Chart CE • •
PROCESS LBL AND LOCAL SPROGS,

• 46
• 46

Chart CF •• ' • • • • • • • • • • 46
BUILD PROGRAM ESD, Chart CG • 46
ENTRY. NAME ALLOCATION, Chart CH •• 46
COMMON ALLOCATION AND OUTPUT,
Chart CI • • • • • • • •
EQUIV ALLOCATION PRINT ERRORS,
Chart CK • • • • • • • • • • •

• 41

• 41
BASE AND BRANCH TABLE ALLOC, Chart
CL • • • • • • • • • • • •
SCALAR ALLOCATE, Chart CM
ARRAY ALLOCATE, Chart CN •
PASS 1 GLOBAL SPROG ALLOCATE,

• 41
• 41

• • • 41

Chart CO • • • • • • • • • • • • 48
SPROG ARG ALLOCATION, Chart CP • ~ • 48
PREP NAMELIST, Chart CQ • • • • • • 48
LITERAL CONST ALLOCATION, Chart CR • 48
FORMAT ALLOCATION, Chart CS • 48
EQUIV ~~P, Chart CT • • • • • • • • 48
GLOBAL SPROG ALLOCATE, Chart CU • • 48
BUILD NAMELIST TABLE, Chart cv • • • 48
BUILD ADDITIONAL BASES, Chart cw • . 49
DEBUG ALLOCATE, Char~ CX • • • 49

Output From Phase 2 • • • • • • • • • 49
Error Messages Produced by Allocate 49
Unclosed DO Loops • • • • • • 49
Storage Maps Produced by Allocate • 50
Subprogram List • • • • • • • • • • 51
Cards Produced by Allocate • • • • • 51

Phase 3 of the Compiler: Unify (IEYUNF) 51
Flow of Phase 3, Chart 01 •••••• 52

ARRAY REF ROLL ALLOTMENT, Chart DA • 52
CONVERT TO ADR CONST, Chart DB • • • 52
CONVERT TO INST FORMAT, Chart DC • • 52

DO NEST UNIFY, Chart DD 53
IEYQOL t',o-j1lle • • • • • 53

Phase 4 of the Compiler: Gen
(IEYGEN) • • • • • • • • 53

Flow of Phase 4, Chart 08 53
ENTRY CODE GEN, Chart EA • • • • • • 54
PROLOGUE GEN, Chart EB • • • • • 54
EPI LOGlJE GEN, Chart EC • 54
GET POLISH, Chart ED • • 54
LbL PROCESS, Chart EF 54
STA GEN, Chart EG 54
STA GEN FINISH, Chart EH 55

Phase 5 of the Compiler: Exit (IEYEXT) • 55
Flow of Phase 5, Chart 09 •••• 55

PUNCH TEMP AND CONST ROLL, Chart FA 55
PUNCH ADR CONST ROLL, Chart FB • 56
PUNCH CODE ROLL, Chart FC 56
PUNCH BASE ROLL, Chart FD 56
PUNCH BRANCH ROLL, Chart FE 56
PUNCH SPROG ARG ROLL, Chart FF • 56
PUNCH GLOBAL SPROG ROLL, Chart FG • 51
PUNCH U~F,n LIBRARY ROLL, Chart FH • 51
PUNCH ADCON ROLL, Chart FI • • 51
ORDEP AND PUNCH RLD ROLL, Chart FJ • 51
PUNCH END CARD, Chart FK 51
PUNCH NAMELIST MPY DATA, Chart FL • 51

Output From Phase 5 • • • • 51

APPENDIX A: THE POP LANGUAGE. • .121
POP Instructions. • • • • • • .121

Translilissive Instructions •••••• 121
Arithmetic and Logical Instructions .130
Decision Making Instructions. • .131
Jump Instructions •• • • • • • .133
Roll Control Instructions •• 133
Code Pro~ucing Instructions •• 134
Address Computation Instructions .134
Indirect Ad~ressing Instruction ••• 135

Labels. • • •• ••• • • .135
Global Labels •• • • • .135
Local Labels. • ••••• 136

Assembly and Operation. • .136
POP Interpreter •••••• 136
Assembler Language References to POP
Subroutines • • • • • • • • •• 131
Global Jump Instructions. • •• .131
Local Jump Instructions •••• .138

APPENDIX
RollO:
Rolli:
Roll 2:
Roll 2:
Roll 3:
Roll 4:
Roll 4:
Roll 5:
Poll 7:
Roll 8:
Roll 9:
Roll 10:
Roll 11:
Roll 12:
Roll 13:
Roll 13:
Roll 14:
Roll 15:
Roll 15:

B: ROLLS USED
LIB Roll
SOURCE Roll •

IN THE COMPILER .140
~ .140

IND VAR Roll • • • • •
NONSTD SCRIPT Roll
NEST SCRIPT Roll
POLISH Roll • • • •
LOOP SCRIPT Roll • • • • •
LITERAL CONST Roll
GLOBAL SPROG Roll •
FX CONST Roll

• .140
• .141
• .141
• .141
• .141
• • 142
• .142
• • 142
• • 143

FL CONST Roll • • • • • • 143
DP CONST Roll
COMPLEX CONST Roll
DP COMPLEX CONST Roll •
TEMP NAME Rcll • • • •
STD SCRIPT Roll • •
TEMP Roll • • • • •
DO LOOPS OPEN Roll
LOOPS OPEN Roll • •

• .143
• .143
• • 143
• .143
• .144
• .144
• .144
• .144

Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll

16: ERROR MESSAGE Roll .144
16: TEMP AND CONST Roll. .144
11: ERROR CHAR Roll .145
17: ADCON Roll • • • • .145
18: INIT Roll. • • • • • • • .145
18: DATA SAVE Roll • • • • • .145
19: EQUIVALENCE TEMP (EQUIV TEMP)

.145
20: EQUIVALENCE HOLD (EQUIV HOLD)

• • • • • • • • • • • . 145
20: REG Roll • • • • • • .146
21: BASE TABLE Roll • • • • • • • .146
22: ARRAY Roll • • • • .146
23: DMY DIMENSION Roll .141
23: SPROG ARG Roll • • • • • .141
24: ENTRY NA~£S Roll .147
25: GLOBAL DMY Roll. .148
26: ERROR Roll .148
26: ERROR LBL Roll • • • • • .148
21: LOCAL DMY Roll •••••••• 148
28: LOCAL SPROG Roll • • • • .149
29: EXPLICIT Roll. • • • • • .149
30: CALL LBL Roll. • • .149
30: ERROR SYMBOL Roll .149
31: NAMELIST NAMES Roll. .149
32: NAMELIST ITEMS Roll. .150
33: ARRAY DIMENSION Roll .150
34: BRANCH TABLE Roll ••••••• 150
35: TEMP DATA NAME Roll •••••• 150
36: TEMP POLISH Roll ••••••• 151
36: FX AC Roll .151
37: EQUIVALENCE Roll • • • • .151
31: BYTE SCALAR Roll • • • • .151
38: USED LIB FUNCTION Roll .152
39: COMMON DATA Roll .152
39: HALF WORD SCALAR Roll. • .152
40: COMMON NAME Roll • • • • .152
40: TEMP PNTR Roll .153
41: IMPLICIT Roll. • • • .153
42: EQUIVALENCE OFFSET Roll •• 153
42: FL AC Roll ••••••• 153
43: LBL Roll •••••••• 153
44: SCALAR Roll • • • • .154
44: HEX CONST Roll • • • • • .154
45: DATA VAR Roll. • ••••• 154
46: LITERAL TEMP (TEMP LITERAL)

. . . • • • • • • . • • • • . .155
41: COMMON DATA TEMP Roll. • .155
47: FULL WORD SCALAR Roll ••••• 155
48: COMMON AREA Roll ••••••• 155
48~ NAMELIST ALLOCATION Roll .155
49: COMMON NAME TEMP Roll. .156
50: EQUIV ALLOCATION Roll. • .156
51: RLD Roll •• • • • • • • .156
52: COMMON ALLOCATION Roll .156
52: LOOP CONTROL Roll ••••••• 156
53: FORMAT Roll •••••••••• 157
54: SCRIPT Roll •••••••••• 151
55: LOOP DATA Roll •••••••• 151
56: PROGRAM SCRIPT Roll • .158
56: ARRAY PLEX Roll. .158
57: ARRAY REF Roll • • • • • .159
58: ADR CONST Roll • • • • .159
59: AT Roll. • • • • • • • • .159
60: SUBCHK Roll. • • .160
60: NAMELIST MPY DATA Roll .160
62: GENERAL ALLOCATION Roll. .160
62: CODE Roll ••••••••••• 160

Roll 60: NAMELIST MPY DATA Roll • .160
Roll 62: GENERAL ALLOCATION Roll ••
Roll 62: CODE Roll ••••

• .160
• .160

Roll 63: AFTER POLISH Roll.
Work and Exit Rolls ••••

WORK Roll
EXIT Roll

• .161
.161

• .161
• .161

APPENDIX C: POLISH NOTATION FORMATS •• 163
General Form • • • • •
Labeled Statements

· .
.163
.163
.163 Array References • • • • •

ENTRY Statement ••••• 164
ASSIGN Statement. .164
Assigned GO TO Statement. .164
Logical IF Statement. • • .164
RETURN Statement. • • • •••• 164
Arithmetic and Logical Assignment
Statement • • • • • • • • • • • • .164
Unconditional GO TO Statement .165
Comruted GO TO Statement. • .165
Arithmetic IF Statement .165
DO Statement. • • • • • • • • • • .165
CONTINUE Statement. • • • .166
PAUSE and STOP Statements .166
END Statement • • • • • • • .166
BLOCK DATA Statf'ment • • • • •• 166
DATA St~tempnt and DATA in Explicit
Specification Statements.
I/O List • • • •
Input S~atements •

FORMATTED READ .
NAMELIST READ
UNFORMATTED READ
READ Standard Unit •

Output ~tatements
FORMATTED WRITE
NAMELIST WRITE • • •
UNFORMATTED WRITE
PRINT
PUNCH

Direct Acces~; ?,t~t(>ments •
READ, Direct Access
WRITE, Direct Access
FIND • . . • • .

• .166
• .167
• .167
• .167

• 1tJ~
.l6R

• • 16R
• • • 168

.1bA
• 169

• • 169
• • • 1 b q

• .lb9
• • • 16 q

• .169
.170

• .170
DEFINE FILE • • • • • 170

END FI LE ~;tatement .170
• .] 71 REWIND ~)tatpment •••••

BACKSPACE Statement
Statement Function •
FUNCTION statement •

• • • • • • • 171
• • • • • • • 171

• • • 171
Function (Statement or Suhprogram)
Referencp • • • • • •
Subroutine Statement •

• 171
• .171

.172 CALL Statement • • • •
Debug Facility Statements • • • • • • .172

AT • • • • • • 172
TRACE ON •
TRACE OFF
DISPLA Y

• •••••• 172
• • • • • • • 172

• • • 173

APPENDIX D: OBJECT CODE PRODUCED BY
THE COMPILER • • • • • • • • • •
Branches • •• ••• • • • • • •
Computed GO TO Statement • • • •
DO Statement • • • • • • •
Statement Functions
Subroutine and Function Subprograms

• • 175
• .175
• .175
• .175
• .176
• .176

Input/Output Operations ••••• ~ ~ ~177
Formatted Read and Write Statements .177
Second List Item, Formatted ••••• 177
Second List Array, Formatted ••••• 178
Final List Entry, Formatted ••••• 178
Unformatted Read and Write Statements 178
Second List Item, Unformatted •••• 178
Second List Array. Unformatted •••• 178
Final List Entry, Unformatted •••• 178
Backspace, Rewind, and Write Tapemark 178
STOP and PAUSE Statements •••••• 179
NAMELIST READ and WRITE •••• 179
DEFINE FILE Statement •• 179
FIND Statement. • • • •
Direct Access qEAD and WRITE
Statements • • • •
FORMAT Statements

.
FORMAT Beginning and Ending
Parentheses
Slashes • • • •
Internal Parentheses
Repetition of IndiYidual FORMAT
specifications •••••••
I,F,E, and D FORMAT COdes
A FORMAT code ~ .
Literal Data • • • • • • • • • •
X FORMAT Code
T FORMAT Code
Scale Factor-P • • • •
G FORMAT code • • • •
L FORMAT Co<if-' • • • •
Z FORMAT code • • • • • • ~ • •

Dphuq Facility • • •••••
DEH{IG :~tat prnent •••••••

BPg inn i nq of Input/Output ' •
End of Input /out[,ut
IJNI'I' Opt ion
TRACE opt ion • • •
~1)BTRACE Opt inn
I ~IT Or)t i c,n
~;URCHK opt ion

AT ~jtatf>lTI('nt • •
TRACE ON !;t d tf'rnent .
TRACE OFF :;tdtf>mpnt
DISPLAY [;t at ement

APPENDIX E: ML;CF.LLAtJF.OOS REFERENCE

.119

• .179
• .180

• .180
.180
.180

• .180
.180

• .180
• .180
• .181
• .181
• .181
• .181
• .181
• .181
• .181
• .181
• .181
• • 181
• .181
• .182
• .182

10')
• • .LV,,"

• .183
• .183
• • ·183
· .183
• .183

• .185
.185

• .185
• .193

DATA • • • • • • • • • • • • •
Parsp Lahel I.i st ••••••••
Supplementd! y Parsp Lahel List •
Allocate· Label List •••••
Supplementary Allocate Label List
Unify Label List ••••••••
Supplementary lJni t y Label List.
Gen Label List • • • • • • • •
supplempntary (;pn Label List ••
Exit Label List • • • •
Supplementary Exit Label List

• •• 193

APPENDIX F: OBJECT-'lIME LIBRARY
SUBPROGRAM~ • • • • •
Library Functions • • • • •
Composition of the Library • •

system Generation options
Module Summaries • • • • • •
Library Interrelationships •

Initialization •••••
Input/Output operations • • • •

• .196
• .196
• .198
• .198
• .208
• .208

• .212
• .212
• .212
• .212
• .213
• .214

• 215
• .216

Define File ••••••••••••
Sequential Read/WriLe Without Format

Initial Call • • • •

.218

.218

.218
Second Call •• • •
Additional List Item Cnlls ••
Final Call • • • • •

• • .219

System Block Modification and

.219

.219

Reference • • • • • • • • •• 219
Error Conditions •••••••••• 220

Sequential READ/WRITE With Format •• 221
Processing the Format Spe~ification 221

Direct Access READ/WRITE Without
Format •••••••••••••••• 224

Initialization Branch ••••••• 224
Successive Entries for List Items .225
Final Branch •••••••••••• 225
Error Conditions •••••••••• 226

uirect Access READ/WRITE With Format .226
FIND. • • •••••• 226
READ And WRITE Using NAMELIST •••• 226

Read. • • • • • • • • • .226
Write • • • • • • • • • • • • .221
Error Conditions. • • • • • • .221

Stop and Pause (Write-to-Operator) •• 221
Stop. • • • • • .221
Pause • • • • • • • • • .221

Backspace .221
Rewind • • • • • 228
End-File. • •••••• 228

Error Handling. • .228

compiler-Directed Errors: IHCIBERH •• 228
Program Interrupts. • • • • .229

Action for Interrupts 9, 11, 12,
13, and 15 • • • • • • • • 229
Action for Interrupt 6 • • .229

Library-Detected Errors •• 230
Without Extended Error Handling •• 230
Wi th Extended Error Handling • '. • • 231

Abnormal Termination Processing .231
Codes 4 and 12 ••••••••••• 231
Codes 0 and 8 ••••••••••• 231

Extended Error Handling Facility ••• 232
option Table--IHCUOPT ••••••• 232
Altering the Option Table--IHCFOPT .232
Error Monitor--IHCERRM • • .233
Extended Error Handling
Trackback--IHCETRCH

conversion • • • • • • • • • •
Mathematical and Service Routines

Mathematical Routines • •.• • •
service Subroutines • • • • •

IHCFDVCH (Entry Name DVCHX)
IHCFOVER (Entry Name OVERFL) •
IHCFSLIT (Entry Names SLITE,
SLITET) •••••••••
IHCFEXIT ~Entry Name EXIT) •
IHCFDUMP (Entry Names DUMP and
PDUMP) • •• • •
IHCDBUG • • • • •

Termination

GLOSSARY •

INDEX

• .233
• .234

.234
• • • 234

• .234
• .234

.235

• .235
• .235

• .235
• .236
• .239

• 259

• .263

Figure 1. Overall Operation of
the Compiler • • • • • • • • • • • • 11
Figure 2. Compiler Organization
Chart •••••• • • • • • • 14
Figure 3. Compiler Storage
Configuration ••••••••••• 15
Figure 4. Compiler Output • • • • 16
Figure 5. Object Module
Configuration ••• ~ 11
Figure 6. Example of Use of Sav~
Area •••••••••• 18
Figure 7. Roll Containing K
Bytes of Information •••• 23
Fig\lre 8. Roll Containing L
Bytps of Reserved Information and
K Bytes of New Information •••• 24
Figure 9. Roll With a Group Bize
of Twelve • • • • • • • • • •• 2~
Figure 10. Roll with Variable
Group Size •••••••••• 2~
Figure 11. First Group Stats
Table • 26
Figure 12. Second Group Stats
Table 26
Figure 13. Scan Control Variables 27

TABLES

Table 1. Internal Configuration
of Operation Drivers • • • • • • • • 31
Table 2. Internal Configuration
of" Control Drivers (Part 1 of 2). 32
~dble 3. Rolls Used by Parse ••• 36
raule 4. Rolls Used by Allocate 44
T~ble 5. Rolls Used by Unify ~2
Table 6. Rolls Used by Gen • ~3

rable 7. Rolls Used by Exit 55
Table 8. POP Instruction
Cross-Reference List. • • • • .139

ILLUSTRATIONS

Figure 14. Quotes Used in the
Co~piler 27
Figure 15. COjnpiler Arrangement
with Registers 28
Figure 16. Calling Paths for
Library Rout':nes 215
Figure 17. Control Flow for
Input/output Operations. .. . 217
Figure 18. IHCUATBL: The Data
Set Assignment 239
Figure 19. DSRN Default Value
Field of IHCUATBLEntry . . • . . . 240
Figure 20. Format of a Unit Block
for a Sequential Access Data Set . 240
Figure 21. Format of a. Unit Block
for a Direct Access Data Set • 242
Figure 22. General Form of the
Option Table (IHCUOPT)•• 242.'
Figure 23. Preface of the Option
Table (IHCUOPT) .•....•.• 242.2
Figure 24. Composition of an
Option Table Entry . • .. • 242.2
Figure 25. Original Values of
Option Table Entries . 242.3

Table 9. Routines Affected by
Extended Error Handling Option 212
Table 10. Format Code Translation.
and Their Meanings • . • • •. 222
Table 11. IHCFCVTH Subroll:tine
Directory.. • . . . • 234
Table 12. IHCDBUG Transfer Table. 236
Table 13. DCB Default Values • 240
Table 14. IHCFCOMH/IHCECOMH
Transfer and Subroutin~ Table .• 242.3

CHARTS

Chart 00. IEYFORT (Part 1 of 4) 59
Chart 01. IEYFORT (Part 2 of 4) •• 60
Chart 02. IEYFORT (Part 3 of 4) •• 61
Chart 03. IEYFORT (Part 4 of 4) •• 62
Chart M. OPTSCAN.. • • • • 63
Chart AB. DDNAMES.. • 64
Chart AC. HEADOPT •••• 65
Chart AD. TIMEDAT ••••• 66
Chart 04.1. PHASE 1 - PARSE (Part
1 of 2) •••• 67
Chart 04.2. PHASE 1 - PARSE (Part
2 of 2) ••••••••• 6e
Chart BA. WRITE LISTING AND READ
SOURCE • • • • • • • • • • 68
Chart BB. INITIALIZE FOR
PROCESSING STATEMENT • • • 69
Chart BC1. PROCESS LABEL FIELD
(Part 1 of 2) ••••••••••• 70
Chart BC2. PROCESS LABEL FIELD
(Part 2 of 2) ••••••••• 70
Chart BD. PROCESS STATEMENT • • • • 71
Chart BE. COMPLETE STATEMENT AND
MOVE POLISH • • • • • • • • • 72
Chdrt BF. PROCESS END STATEMENT • • 73
Chart BG. PROCESS POLISH 74
Chart 05. PHASE 2 - ALLOCATE
(Part 1 of 2) ••••••••• 75
Chart 06. PHASE 2 - ALLOCATE
(Part 2 of 2) •••••••• 76
Chart CA. MOVE BLD NAMES TO DATA
VAR ROLL • • • • • • • • • • • • 77
Chart CB. PREPARE EQUIVALENCE DATA 78
Chart CC. ALLOCATE BLOCK DATA • 79
Chart CD.
DIMENSIONS
Chart CEo
LOOPS

PREPROCESS DUMMY

CHECK FOR UNCLOSED DO

Chart CF. CONSTRUCT BRANCH TABLE

80

81

ROLL • • • • • • • • • • • • • • • • 82
Chart CG. ALLOCATE HEADING AND
PUNCH ESD CARDS • • • • • • • • • • 83
Chart CH. CHECK ASSIGNMENT OF
FUNCTION VALUE • • • • • • •
Chart CI. COMMON ALLOCATION
Chart CK. EQUIVALENCE DATA
ALLOCATION • • • • • • • •
Chart CL. SAVE AREA, BASE AND
BRANCH TABLE ALLOCATION
Chart CM. ALLOCATE SCALARS
Chart CN. ALLOCATE ARRAYS •
Chart CO. ADD BASES FOR
SUBPROGRAM ADDRESSES • • •
Chart CP. ALLOCATE SUBPROGRAM

• • 84
• • 85

86

87
• • 88

89

90

ARGUMENT LISTS • • • • • • • • • 91
Chart CQ. PREPARE NAMELIST TABLES • 92
Chart CR. ALLOCATE LITERAL
CONSTANTS • • • • • • • • • • •
Chart CS. ALLOCATE FORMATS
Chart CT. MAP EQUIVALENCE • • •
Chart CU. ALLOCATE SUBPROGRAM
ADDRESSES • • • • • • • • • •

93
94
95

96

Chart CV. BUILD AND PUNCH
NAMELIST TABLES • • • • • • • 97
Chart CWo BUILD BASES • • • 98
Chart CX. DEBUG ALLOCATE • • 99
Chart 07. PHASE 3 - UNIFY. • .100
Chart DA. BUILD ARRAY REF ROLL •• 101
Chart DB. MAKE ADDRESS CONSTANTS .102
Chart DC. CONSTRUCT INSTRUCTIONS .103
Chart DO. PROCESS NESTED LOOPS .104
Chart 08. PHASE 4 - GEN •••••• 105
Chart EA. GENERATE ENTRY CODE ••• 106
Chart EB. PROLOGUE CODE GENERATION 107
Chart EC. EPILOGUE CODE GENERATION 108
Chart ED. MOVE POLISH NOTATION •• 109
Chart EF. PROCESS LABELS •• 110
Chart EG. GENERATE STMT CODE .111
Chart EH. COMPLETE OBJECT CODE •• 112
Chart 09. PHASE 5 - IEYEXT •• 113
Chart FA. PUNCH CONSTANTS AND

• .114
• .115
• .116

TEMP STORAGE • • • • • • • • • •
Chart FB. PUNCH ADR CONST'ROLL
Chart FC. PUNCH OBJECT COD.E • •
Chart FD. PUNCH BASE TABLE
Chart FE. PUNCH BRANCH TABLE
Chart FF. PUNCH SUBPROGRAM
ARGUMENT LISTS • • • • • • •

• .111
••• 118

.119
Chart FG. PUNCH SUBPROGRAM
ADDRESSES • • • • • • .120
Chart FH. COMPLETE ADDRESSES FROM
LIBRARY •••••••••••••• 121
Chart Fl. PUNCH ADDRESS CONSTANTS .122
Chart FJ. PUNCH RLD CARDS ••••• 123
Chart FK. PUNCH END CARDS ••••• 124
Chart FL. PUNCH NAMELIST TABLE
POINTERS. • ••••••••• 125
Chart GO. IHCFCOMH/IHCECOMH
(Part 1 of 4) ••••••••
Chart GO. IHCFCOMH/IHCECOMH

• 243

(Part 2 of 4) •••••••••. 243.1
Chart GO. IHCFCOMH/IHCECOMH
(Part 3 of 4) •••••••••• 243.2
Chart GO. IHCFCOMH/IHCECOMH
(Part 4 of 4) •••••••••• 243.3
Chart Gl. IHCFIOSH/IHCEFIOS
(Part 1 of 2) ••••••••••• 244
Chart Gl. IHCFIOSH/IHCEFIOS
(Part 2 of 2) •••••••••• 244.1
Chart G2.' IHCDIOSE/IHCEDIOS
(Part 1 of 5) ••••••••••• 245
Chart G2. IHCDIOSE/IHCEDIOS
(Part 2 of 5) •••••••••• 245.1
Chart G2. IHCDIOSE/IHCEDIOS
(Part 3 of 5) •••••••••• 245.2
Chart G2. IHCDIOSE/IHCEDIOS
(Part 4 of 5) •••••••••• 245.3
Chart G2. IHCDIOSE/IHCEDIOS
(Part 5 of 5) ••••••••••• 246
Chart G3. IHCNAMEL •••••••• 247
Chart G4. IHCFINTH/IHCEFNTH
(Part 1 of 3) ••••••••••• 248
Chart G4. IHCFINTH/IHCEFNTH
(Part 2 of 3) •••••••••• 248.1

Figure 1. Overall Operation of
the Compiler • • • • • • • • • • • • 11
Figure 2. Compiler Organization
Chart •••• • • • • • • • • • • • 14
Figure 3. Compiler Storage
Configuration ••••••••••• 15
Figure 4. Compiler Output •• 16
Figure 5. Object Module
Configuration • • • • • •• 17
Figure 6. Example of Use of Sav~
Area •••••••••• • • lR
Fiqure 7. Roll Containing K
Bytes of Information ••••••• 23
Figllre 8. Roll Containing L
Bytps of Reserved Information and
K Bytes of New Information •••• 24
Figure 9. Roll With a Group Rize
of Twelve • • • • • • • • • • • 2~
Figure 10. Roll with Variable
Group Size •••••••••• 2~
Figure 11. First Group Stats
Table 26
Figure 12. Second Group Stats
Table 26
Figure 13. Scan Control Variables 27

TABLES

Table 1. Internal Configuration
of Ope~ation Drivers • • • • • • • • 31
Table 2. Internal Configuration
o~ control Drivers (Part 1 of 2) •• 32
~dble 3. Rolls Used by Parse ••• 36
fable 4. Rolls Used by Allocate • 44
T~ble 5. Rolls U~ed by Unify • ~2
Table 6. Rolls Used by Gen • ~3
rable 7. Rolls Used by Exit ~5
Table 8. POP Instruction
Cross-Reference List •••••••• 139

ILLUSTRATIONS

Figure 14. Quotes Used in the
Co~piler • 27
Figure 15.. Co,npiler Arrangement
with Registers 28
Figure 16. Calling Paths for
Library Rout~nes 215
Figure 17. Control Flow for
Input/output Operations. . .. 217
Figure 18. IHCUATBL: The Data
Set Assignment . . . • 239
Figure 19. DSRN Default Value
Field of IHCUATBLEntry . . . • . . 240
Figure 20. Format of a Unit Block
for a Sequential Access Data Set . 240
Figure 21. Format of a. Unit Block
for a Direct Access Data Set . . . 242
Figure 22. General Form of the
Option Table (IHCUOPT) ••.•• 242.'
Figure 23. Preface of the'Option
Table (IHCUOPT)• 242.2
Figure 24. Composition of an
Option Table Entry • 242.2
Figure 25. Original Values of
Option Table Entries . 242.3

Table 9. Routines Affected by
Extended Error Handling Option 212
Table 10. Format Code Translations
and Their Meanings • . . • • • • . 222
Table 11. IHCFCVTH Subroll:tine
Directory.. • . • • . • 234
Table 12. IHCDBUG Transfer Table. 236
Table 13. DCB Default Values • 240
Table 14. IHCFCOMH/IHCECOMH
Transfer and Subroutin~ Table •. 242.3

CHARTS

(Part 1 of 4) 59 Chart 00. IEYFORT
Chart 01. IEYFORT
Chart 02. IEYFORT
Chart 03. IEYFORT
Chart AA. OPTSCAN
Chart AB. DDNAMES..

(Part 2 of 4) 60
(Part 3 of 4) •• 61
(Pa rt 4 of 4) • • 62

• • • • 63

Chart AC. HEADOPT ••• •
Chart AD. TIMEDAT......
Chart 04.1. PHASE 1 - PARSE (Part

64
65
66

1 of 2) •••• 67
Chart 04.2. PHASE 1 - PARSE (Part
2 of 2) •••• 68
Chart BA. WRITE LISTING AND READ
SOURCE • • • • • • • • • •
Chart BB. INITIALIZE FOR
PROCESSING STATEMENT • • •
Chart BC1. PROCESS LABEL FIELD

68

69

(Part 1 of 2) ••••••••••• 70
Chart BC2. PROCESS LABEL FIELD
(Part 2 of 2) •••••••••
Chart BD. PROCESS STATEMENT • •
Chart BE. COMPLETE STATEMENT AND

70
71

MOVE POLISH • • • • • • • • • 72
Chdrt BF. PROCESS END STATEMENT • • 73
Chart BG. PROCESS POLISH • • 74
Chart 05. PHASE 2 - ALLOCATE
(Part 1 of 2) ••••••••••• 75
Chart 06. PHASE 2 - ALLOCATE
(Part 2 of 2) •••••• • 76
Chart CA. MOVE BLD NAMES TO DATA
VAR ROLL • • • • • • • • • • • • 77
Chart CB. PREPARE EQUIVALENCE DATA 78
Chart CC. ALLOCATE BLOCK DATA • 79
Chart CD. PREPROCESS DUMMY
DIMENSIONS • • • • • 80
Chart CEo CHECK FOR UNCLOSED DO
LOOPS • • • • • • • • • • • 81
Chart CF. CONSTRUCT BRANCH TABLE
ROLL • • • • • • • • • • • • • • • • 82
Chart CG. ALLOCATE HEADING AND
PUNCH ESD CARDS • • • • • • • • 83
Chart CH. CHECK ASSIGNMENT OF
FUNCTION VALUE • • • • • • • 84
Chart CI. COMMON ALLOCATION •• 85
Chart CK. EQUIVALENCE DATA
ALLOCATION • • • • • • • • 86
Chart CL. SAVE AREA, BASE AND
BRANCH TABLE ALLOCATION 87
Chart CM. ALLOCATE SCALARS 88
Chart CN. ALLOCATE ARRAYS • 89
Chart CO. ADD BASES FOR
SUBPROGRAM ADDRESSES • • • 90
Chart CP. ALLOCATE SUBPROGRAM
ARGUMENT LISTS • • • • • • • • • • • 91
Chart CQ. PREPARE NAMELIST TABLES • 92
Chart CR. ALLOCATE LITERAL
CONSTANTS • • • • • • • • • • •
Chart CS. ALLOCATE FORMATS
Chart CT. MAP EQUIVALENCE • • •
Chart CU. ALLOCATE SUBPROGRAM
ADDRESSES • • • • • • • • • •

93
• 94

95

96

Chart CV. BUILD AND PUNCH
NAMELIST TABLES • •• •••••• 97
Chart CWo BUILD BASES • • 98
Chart CX. DEBUG ALLOCATE 99
Chart 07. PHASE 3 - UNIFY. • .100
Chart DA. BUILD ARRAY REF ROLL •• 101
Chart DB. MAKE ADDRESS CONSTANTS .102
Chart DC. CONSTRUCT INSTRUCTIONS .103
Chart DO. PROCESS NESTED LOOPS .104
Chart 08. PHASE 4 - GEN •••••• 105
Chart EA. GENERATE ENTRY CODE ••• 106
Chart EB. PROLOGUE CODE GENERATION 107
Chart EC. EPILOGUE CODE GENERATION 108
Chart ED. MOVE POLISH NOTATION •• 109
Chart EF. PROCESS LABELS •• 110
Chart EG. GENERATE STMT CODE .111
Chart EH. COMPLETE OBJECT CODE •• 112
Chart 09. PHASE 5 - IEYEXT •• 113
Chart FA. PUNCH CONSTANTS AND
TEMP STORAGE • • • • • • • • • •
Chart FB. PUNCH ADR CONST"ROLL
Chart FC. PUNCH OBJECT CODE • •
Chart FD. PUNCH BASE TABLE
Chart FE. PUNCH BRANCH TABLE
Chart FF. PUNCH SUBPROGRAM
ARGUMENT LISTS • • • • • • •
Chart FG. PUNCH SUBPROGRAM
ADDRESSES • • • • • • •

• .114
• .115
• .116
• .117

.118

.119

.120
Chart FH. COMPLETE ADDRESSES FROM
LIBRARY •••••••••••••• 121
Chart Fl. PUNCH ADDRESS CONSTANTS .122
Chart FJ. PUNCH RLD CARDS ••••• 123
Chart FK. PUNCH END CARDS ••••• 124
Chart FL. PUNCH NAMELIST TABLE
POINTERS. • ••••••••• 125
Chart GO. IHCFCOMH/IHCECOMH
(Part 1 of 4) ••••••••••• 243
Chart GO. IHCFCOMH/IHCECOMH
(Part 2 of 4) •••••••••• 243.1
Chart GO. IHCFCOMH/IHCECOMH
(Part 3 of 4) •••••••••• 243.2
Chart GO. IHCFCOMH/IHCECOMH
(Part 4 of 4) •••••••••• 243.3
Chart G1. IHCFIOSH/IHCEFIOS
(Part 1 of 2) ••••••••••• 244
Chart G1. IHCFIOSH/IHCEFIOS
(Part 2 of 2) •••••••••• 244.1
Chart G2. IHCDIOSE/IHCEDIOS
(Part 1 of 5) ••••••••••• 245
Chart G2. IHCDIOSE/IHCEDIOS
(Part 2 of 5) •••••••••• 245.1
Chart G2. IHCDIOSE/IHCEDIOS
(Part 3 of 5) •••••••••• 245.2
Chart G2. IHCDIOSE/IHCEDIOS
(Part 4 of 5) •••••••••• 245.3
Chart G2. IHCDIOSE/IHCEDIOS
(Part 5 of 5) ••••••••••• 246
Chart G3. IHCNAMEL........ 247
Chart G4. IHCFINTH/IHCEFNTH
(Part 1 of 3) ••••••••••• 248
Chart G4. IHCFINTH/IHCEFNTH
(Part 2 of 3) •••••••••• 248.1

Chart G4. IHCFINTH/IHCEFNTH Chart G9. IHCFOPT (Part 3 of 3) · • 257
(Part 3 of 3) · · · · . • 248.2 Chart G1O. IHCTRCH/IHCERTCH · · • 258
Chart G5. IHCADJST • · · · · . • • 249 Chart Gil. IHCFOUMi? · · · · · • 258.1
Chart Go. IHCIBERH • · · · · ~"A

• .::;)U Chart G12. IHCt'EXIT · · · · · • 258.2
Chart G1. IHCSTAE (Part 1 of 2) • 251 Chart G13. IHCFSLIT · · · · · .258.3
Chart G1. IHCSTAE (Part 2 of 2) • 252 Chart G14. IHCFOVER · · · · · · · .258.4
Chart G8. IHCERRM (Part 1 of 2) • 253 Chart GiS • IHCFOVCH • · · · · .258.5
Chart G8. IHCERRM (Part 2 of 2) .254 Chart G16. IHCOBUG (Part 1 of 4) • 258.6
Chart G9. IHCFOPT (Part t of 3) .255 Chart G16. IHCOBUG (Part 2 of 4) • 258.7
Chart G9. IHCFOPT (Part 2 of 3) .256 Chart G16. IHCOBUG (Part 3 of 4) .258.8

Chart G16. IHCOBUG (Part 4 of 4) • 258.9

This section contains general informa
tion describing the purpose of the FORTRAN
IV (G) compiler, the minimum machine confi
guration required, the relationship of the
compiler to the operating system, compiler
design and implementation, and compiler
output. The various rolls,1 variables,
registers, pointers, and drivers used by
the compiler are also discussed.

PURPOSE OF THE COMPILER

The IBM System/360 Operating System
FORTRAN IV (G) compiler is designed to
accept programs written in the FORTRAN IV
language as defined in the publication ~
System/360: FORTRAN IV Language, Form
C28-6515.

The compiler produces error messages for
invalid statements, and, optionally, a
listing of the source module, storage maps,
and an object module acceptable to the
System/360 Cperating System linkage editor.

MACHINE CONFIGURATION

The minimum system configuration
required for the use of the IBM System/360
Operating System with the FORTRAN IV (G)
compiler is as follows:

• An IBM System/360 Model 40 computer
with a storage capacity of 128K bytes
and a standard and floating-point
instruction set.

• A device for operator communication,
such as an IBM 1052 Keyboard Printer.

• At least one direct-access device pro
vided for system residence.

COMPILER AND SYSTEM/360 OPERATING SYSTEM

The FORTRAN IV (G) compiler is a proces-
sing program of the IBM System/360

1M08t of the tables used by the compiler
are called rolls. (Further explanation of
rolls is given in -Rolls and Roll
Controls.-)

Operating System. As a processing program,
the compiler communicates with the control
program for input/O"ltput and other ser
vices. A general des~ription of the con
trol program is gi~en in the publication
IBM System/360 operat.t!!g System: Introduc
tion to Con~rol Program LOgic, Program
Logic Manual.

A compilation, or a batch of compila
tions, is requested using the job statement
(JOBi, the execute statement (EXEC), and
data definition statements (DO). Alterna
tively, cataloged procedures may be used.
A discussion of FORTRAN IV compilation and
the available cataloged procedures is given
in the publication !~~L§.~~~~oper~ing
System: FQRTRAN IV (G) Proqraromer's Guide.

The compiler receives control initially
from the calling program. (e.g., job sche
duler or another program that CALLs, LINKs
to, or ATTACHes the compiler). Once the
compiler receives control, it uses the QSAM
access method for all of its input/output
operations. After compilation is com
pleted, control is returned to the calling
program.

COMPILER DESIGN

The compiler will operate within a total
of 80K bytes of main storage. This figure
includes space for the compiler code, data
management access routines, and sufficient
working space to meet other storage
requirements stated throughout this
publication.

Any additional storage available is used
as additional roll storage.

LIMITATIONS QF THE COMPILER

The System/360 Operating System FORTRAN
IV (G) compiler and the object module it
produces can be executed on all System/360
models from Model uo and above, under
control of the operating system control
program. All input information must be
written in either BCD ~r EBCDIC representa
tion. The compiler is designed to process
all properly written programs so that the
object code produced by the compiler is
compatible with the existing mathematical
library subroutines.

Section 1: Introduction to the compiler 9

If ten source read errors occur during
the compilation, or if it is not possible
to use SYSPRINT, the operation of the
compiler is terminated. The operation of
the compiler is also limited by the availa
bility of main storage space. The compila
tion is terminated if:

• The roll storage area is exceeded

• Any single roll exceeds 64K bytes,
thereby making it una1dressable

• The WORK or EXIT roll exceeds its
allocated storage

Note: If any of these conditions occur
during the first phase of the compilation,
the statement currently being processed may
be discarded; in this case, the compilation
continues with the next statement.

The primary control and processing rou
tines (hereafter referred to as "POP rou
tines" or "compiler routines") of the com
piler are primarily written in machine
independent pseudo instructions called POP
instructions.

Interpretation of the pseudo instruc
tions is accomplished by routines written
in the System/360 Operating System assembl
er language. These routines (hereafter
referred to as "POP subroutines") are an
integral part of the" compiler and perform
the operations specified by the POP ins
tructions, e.g., saving of backup informa-"
tion, maintaining data indicators, and gen
eral housekeeping.

Control of the compiler operation is
greatly affected by source language syntax
rules during the first phase of the compil
er, Parse. During this phase, identifiers
and explicit declarations encountered in
parsing are placed in tables and a PO!!2h
notation form of the program is produced.
(Por further information on Polish nota
tion, see Appendix C, "Polish Notation
Formats.")

10

The compiler quite frequently uses the
method of recursion in parsing, analysis,
and optimization. All optimizing and code
generating routines, which appear in later
phases, operate directly on the tables and
Polish notation produced by Parse.

The compiler is also designed so that
reloading of the compiler is unnecessary in
order to accomplish multiple compilations.

POP LANGUAGE

The FORTRAN IV (G) compiler is written
in a combination of two languages: the
System/360 Operating System assembler lan
guage, which is used where it is most
efficient, and the POP language.

The POP language is a mnemonic macro
programming language whose instructions
include functions that are frequently per
formed by a compiler. POP instructions are
written for assembly by the System/360
Operating System assembler, with the POP
instructions defined as macros. Each POP
instruction is assembled as a pair of
address constants which together indicate
an instruction code and an operand. A
statement or instruction written in the POP
language is called a POP. The POP instruc
tions are described in Appendix A.

COMPILER ORGANIZATION

The System/360 Operating System FORTRAN
IV (G) compiler is composed of a control
phase, Invocation, and five processing
phases (see Figure 1): Parse, Allocate,
Unify, Gen, and Exit. The operating system
names for these phases are, respectively,
IEYFORT, IEYPAR, IEYALL, IEYUNF, IEYGEN,
and IEYEXT. (The first level control and
second level processing compiler routines
used in each phase are shown in Figure 2.)
In addition, Move is a pre-assembled work
area, IEYROL.

IEYFORT

SYSIN----------->r---~~~;~;----l----->f---~~~t;ol---l----->r--i~;~~;ti~~-l-----> ~
I Module I J Program I ,Phase I
l~~~ __________ J L _____________ J ~============_J

(9 . r-------------,
I r--->ISource Module I SYSPRINT
I I I listing I V IEYPAR 1 L _____________ J

r-------------, I
P~r~e t-----------i

I (Phase 1) I I
l------T------J I r-------------, I L--->ISource Module,· SYSPRINT

I I diagnostics I I L _____________ J

V IEYALL r-------------,
r-------------, r--->IStorage Maps I , Allocate I I L _____________ J

I (Phase 2) ~-----------~
L------T------J I r-------------,

, L--->IESD and TXT
I ,Cards I V IEYUNF l _____________ J

r-------------,
I Unify I
I (Phase 3) I
L------T------J

I
V IEYGEN

r-------------,
I Gen I
, (Phdse 4) I r-------------,
l------T------J r--->IObject Module I

I I I listing I I I L _____________ J

V IEYEXT I r-------------,
r-------------, I IObject Module I

Exit ~-----------+--->ITXT cards I I (Phase 5) I I L _____________ J

l------T------J I
I I
• I j-------------l
I I IESD, RLD, andl
V IEYFORT L--->IEND cards I

r-------------,
I Invocation I
I Phase I
l __ ... ___ ~------J

••• . * * .

L _____________ J

• * *. .• ~ul tiple •• NO r--------:------,
•• Compi lations •• --------------> I Control I

•. .• I Program I
*. •

•• ••• L __ ~----------J

• YES V
~

Figure 1. Overall Operation of the compiler

SYSPRINT

SYSPUNCH/SYSLIN

SYSPRINT

SYSPUNCH/SYSLIN

SYSPUNCH/SYSLIN

Section 1: Introduction to the Compiler 11

control Phase: Invocation (IEYFORT)

The Invocation phase (IEYFORT) is loaded
upon invocation of the compiler and remains
in core storage throughout compilation. It
is entered initially from the calling pro
gram, from each module at the end of its
processing, and from Exit after compilation
is complete.

At the initial entry, the Invocation
phase initializes bits in IEYFORT1 from the
options specified by the programmer for the
compilation, opens data sets, and fetches
the modules IEYPAR, IEYALL, IEYUNF, IEYGEN,
and IEYEXT via a series of LOAD macro
instructions. These modules remain in core
storage for a series of main program and
subprogram compilations unless it is deter
mined that additional space required for
tables is not available. When this occurs,
modules that precede the active one are
deleted, and compilation is resumed. If
more space is required, modules that follow
the currently active one are deleted.

When a module completes processing, it
returns to IEYFORT, which ensures the pre
sence of the next module and transfers to
it. During initialization for a subpro
gram, IEYFORT ensures that all modules are
loaded.

The last entry is made from the Exit
phase at the completion of a compilation.
When the entry is made from Exit, the
Invocation phase checks for multiple compi
lations. If another compilation is
required, the compiler is reinitialized and.
the main storage space allocated for the
expansion of rolls is assigned to the next
compilation; otherwise, .control is returned
to the calling program.

Phase 1: Parse (IEYPAR)

Parse accepts FORTRAN statements in card
format from SYSIN and scans these to pro
duce error messages on the SYSPRINT data
set, a source module listing (optional),
and Polish notation for the program. The
Polish notation is maintained on internal
tables for use by subsequent phases. In
addition, Parse produces the roll entries
defining the symbols used in the source
module.

Phase 2: Allocate (IEYALL)

Allocate, which operates immediately
after Parse, uses the roll entries produced

12

by Parse to perform the storage allocation
for the variables defined in the source
module. The addressing information thus
produced is then left in main storage to be
used by the next phase.

The ESD cards for the object module
itself, COMMON blocks and subprograms, and
TXT cards for NAMELIST tables, literal
constants and FORMAT statements are pro
duced by Allocate on the SYSPUNCH and/or
SYSLIN data sets. Error messages for
COMMON and EQUIVALENCE statements, unclosed
DO loops and undefined labels are produced
on SYSPRINT; on the MAP option, maps of
data storage are also produced.

The Unify phase optimizes the usage of
general registers within DO loops by
operating on roll data whiGh describes
array references. The optimization applies
to references which include subscripts of
the form ax+b, where a and b are positive
constants and x is an active induction
variable (that is, x is a DO-controlled
variable and the reference occurs within
the DO loop controlling it), and where the
array does not have any adjustable dimen
sions. The addressing portion of the
object tnstruction for each such array
reference is constructed to m1n1m1ze the
number of registers used for the reference
and the number of registers which must be
changed as each induction variable changes.

Phase AI: Gen (IEYGEN)

Gen uses the Polish notation produced by
Parse and the memory allocation information
produced by Allocate. From this informa
tion, Gen produces the code, prologues, and
epilogues required for the object module.
In order to produce the object code, Gen
resolves labeled statement references
(i.e., a branch target label) and subpro
gram entry references.

The final output from Gen is a complete
form of the machine language code which is
internally maintained for writing by the
Exit phase.

Phase 5: Exit (IEYEXT)

Exit, which is the last processing phase
of the compiler. produces the TXT cards for
the remaining portion of the object module,
the RLD cards (which contain the relocat
able information), and the END card. This
output is placed optionally on the SYSLIN
data set for linkage editor processing
and/or SYSPUNCH if a card deck has been
requested. Additionally, a listing of the
generated code may be written on the SYS-

PRINT data set in a forlMt similar to that
produced by an assembly program.

Roll contains static rolls and roll
information always required for compiler
operations. These are described under the
heading =Roils and Roil controls· later in
this section.

Section 1: Introduction to the campi,ler 13

r---,
I r---PRINT AND READ SOURCE
I I STA INIT
I r---START COMPILER I LBL FIELD XLATE
! PARSE---~ I STA XLATE
1-- I I STA FINAL
1 I I REGISTER IBCOM
I I I PROCESS POLl SH
1 L---STATEMENT PROCESS----. ACTIVE END STA Y~TE
I L---STA FINAL END
1
1 r---PREP EQUIV AND PRINT ERRORS

BLOCK DATA PROG ALLOCATION
PREP DMY DIN AND PRINT ERRORS
PROCESS DO LOOPS
PROCESS LBL AND LOCAL SPROGS
BUILD PROGRAM ESD
ENTRY NAME ALLOCATION
COMMON ALLOCATION AND OUTPUT
BASE AND BRANCH TABLE ALLOC
EQUIV ALLOCATION PRINT ERRORS
FORMAT AI.UX'ATION
SCALAR ALLOCATE
ARRAY ALLOCATE

ALLOCATE-----START ALLOCATE-------~ PASS 1 GLOBAL SPROG ALLOCATE
SPROG ARG ~LLOCATION
PREP NAMELIS'T
LITERAL CONST ALLOCATION
EQUIV MAP
GLOBAL SPROG ALLOCATE
BUILD NAMF.LIST TABLE
ALPHA LBL AND L SPROG
BUILD ADDITIONAL BASES
ALPHA SCALAR ARRAY AND SPROG
LITERAL CONST ALLOCATION
CALCULATE BASE AND DISP

---DEBUG ALLOCATE

r---ARRAY REF ROLL ALLOTMENT
UNIFY--------ST~T UNIFY----------~ DO NEST UNIFY

r---START
I ,

GEN-----,

GEN

J CONVERT TO ADR CONST
L---CONVERT TO INST FORMAT

r---MOVE ZEROS TO T AND C
I ENTRY CODE GEN
I PROLOGUE GEN
L---EPILOGUE GEN

r---GET POLISH I
L---GEN PROCESS----------~ LBL PROCESS

1 STA GEN
L---STA GEN FINISH
r---PUNCH TEMP AND CONST ROLL
1 PUNCH ADR CONST ROLL
1 PUNCH CODE ROLL
I PUNCH BASE ROLL
I PUNCH BRANCH ROLL
I PUNCH SPROG ARG ROLL

EXIT---------EXIT PASS------------t PUNCH GLOBAL SPROG ROLL
I PUNCH USED LIBRARY ROLL
I PUNCH ADCON ROLL
I ORDER AND PUNCH RLD ROLL
I PUNCH END CARD
I PRINT HEADING
I PRINT A LINE

I L---PRINT COMPILER STA~ISTICS L-__ -- ____________________________ •. _J

Figure 2. compiler Organization Chart

r-------T----------T------------------,
I Load I I I
IModule I IContent or I
I Name I Components I Function I
~-------+----------+------------------i

Low IEYFORTjIEYFORT jlnvocation and
Core I I control

I I
IIEYFORT1 'Option bits
I . I
IIEYFORT2 I~oads and deletes
J other modules
i
IIEYROL Roll statistics
I (bases, tops,

IEYINT

bottoms)

Group statistics
(displacement
group sizes)

WORK roll

EXIT roll
I
IRoIl address table
I
IPOP Jump Table
I
IPOP machine
I language sub-
I routines

Roll Storage is Allocated from this

IEYPAR IEYPAR IParse phase
I
IQuotes and
I messages
I

I EYALL IEYALL 1Allocate phase
I

IEYUNF IEYUNF JUnify phase
I

IEYGEN IEYGEN IGenerate phase
High I
CorelIEYEXT IEYEXT IExit phase L _______ ~ __________ ~ _________________ _

Figure 3. Compiler Storage Configuration

COMPILER STORAGE CONFIGURATION

Figure
tions, but
component
they exist
parts of
tion 2.

3 illustrates the relative posi
not the relative sizes of the
parts of the FORTRAN compiler as
in main storage. The component
each phase are described in Sec-

COMPILER OUTPUT

The source module(s) to be compiled
appear as input to the compiler on the
SYSIN data set. The SYSLIN, SYSPRINT, and
SYSPUNCH data sets are used (depending on
the options specified by the user) to
contain the output of the compilation.

The output of the compiler is repre
sented in EBCDIC form and consists of any
or all of the following:

Object Module (linkage editor input)

Source Module listing

Object Module listing

Storage maps

Error messages (always produced)

Relocatable card images for punchi,g

The overall data flow and the data sets
used for compilation are illustrated in
Figure 4. The type of output is determined
by compile time parameters.

Section 1: Introduction to the Compiler 15

r---,

r----------------,
I Error and I

r----For all-------------->I Warning I SYSPRINT
I compilations I Messages I
, I (if any) I , l ________________ J , ,
I
I
~----LIST
I
I
I

SYSIN I
r--------, I
,source , I
'Module , ~----DECK
l----T---J ,

, I
I ,
V I

r---------, ,
I FORTRAN , I
'IV (G) ~->~
'Compiler' I
l ________ J ~----LOAD , , , ,

r----------------,
I Object I

Option---------->I Module I SYSPRINT
I listing I l ________________ J

r----------------,
'Object Module I

Option---------->I (ESD, TXT, RLD I SYSPUNCH
lEND) Card Images I l ________________ J

r----------------, IObject Module I
Option---------->I (ESO, TXT, RLD, I SYSLIN

lEND) Card Images, l ________________ J

, r----------------,
~----MAP Option----------->I Storage , SYSPRINT
I I Map , , l ________________ J

I
I ,
I
L----SOURCE

r----------------,
I Source ,

Option-------->I Module , SYSPRINT
I Listing , l ________________ J

l ___ __

Figure 4. Compiler Output

16

OBJECT MODULE

The configuration of the object module
produced by the FORTRAN IV (G) compiler is
shown in Figure 5.

Entry point---> r---------------------,
IHe~ding I

.---------------------~ 'Save area !.
~---------------------i
IBase table I
.---------------------~ IBranch table I
~---------------------i 13ubprogram argument ,
Ilists I
~---------------------i
ISubprogram addresses I
t---------------------~ IEQUIVALENCE variables I

t---------------------i
IScalar variables I
.---------------------i
I Arrays t
~---------------------i
INAMELIST tables I
.---------------------~ ILiteral .constants I
I (except those used I
lin DATA and PAUSE I
I statements) I

.---------------------~ IFORMAT statements I

.---------------------i
ITemporary storage I
land constants I

.---------------------i
IProgram text I L _____________________ J

Figure 5. Object Module Configuration

components of the Object Module

The following paragraphs describe the
components of the object module produced by
the FORTRAN IV (G) compiler.

HEADING: The object module heading
InClUdes all initializing instructions
required prior to the execution of the body

of the object module. Among oth~:r fUnc
tions, these instructions set· general
register 13 (see "Object Module General
Register usage") and perform var~ons opera
tions, depending on whether the proqram is
a main program or a subprogram and on
whether it calls subprograms. (See "Code
Producc..d for SUBROUTINE dnd FUNCTION
Subprograms.")

SAVE AREA: The save area. at maximum 12
bytes long, is reserved for information
saved by called subprograms. Figure 6
shows an example of the use of this area in
program Y, which is called by program X,
and which calls program Z.

The first byte of the fifth word in the
save area (Save Area of Y + 16) is set to
all ones by program Z before it returns to
program Y. Before the return is made, all
general registers are restored to their
program Y values.

BASE TA~LE: The base table is a list of
adJresses from which th~ object module
loads a general register prior to accessing
data; the general register is then used as
a base in the data referencing instruction.

Because an interval of 4096 bytes of
storage can be referenced by means of the
machine instruction D field, consecutive
values representing a single control sec
tion in this table differ from each other
by at least 4096 bytes. Only one base
table entry is constructed for an array
which exceeds 4096 bytes in length; hence,
there is·a possibility that an interval of
more than 4096 bytes exists between conse
cutive values for a single control section
in the table.

The addresses compiled into this table
are all relative, and are modified by the
linkage editor prior to object module
execution. Those entries constructed for
references to COMMON are modified by the
beginning address of the appropriate COMMON
block; those entries constructed for
references to variables. and constants
within the object module itself are modi
fied by the beginning address of the appro
priate object module.

Section 1: Introduction to the Compiler 11

.--,
<--- ~ bytes---->
r----------------,
I Subprogram I <---Stored by initial entry code.

Save Area of Ylepilogue addressl
~----------------~

+U IProgram X save I <---Stored by pro~rdm y.
larea address I
t---------·----·---~

+8 IProgram Z save I <---Stored by program Z, if it calls subroutines·
larea address I
.----------------~

+12 t~~~~~~~~-~~-----~ ,
+16 IRegister 1~ I

.----------------~
+20 IR€gister 0 I

.----------------~ Values on leaving program Y. stored by program z.
! I
I I
I I
.----------------~

+12 IRegister 12 I
l ___ . _____________ J

l __ - ________________ ~---------------J

Figure b. Examplp of Use of Sav~ Area

BRAN~TABLE: This table contains one
full word entry for each Q~anch ta~~~!~~!
(a label referred to in a branch statement)
and statement function in the source
module. In addition, one entry occurs for
each label produced by the compiler in
generating the object module. These labels
refer to return points in DO loops and to
the statement following com~lete Logical IF
st.atements, and are called ~de 12..Qel~.

In the object module code, any branch is
performed by loading general register 14
(see "Object Module General Register
Usage") from this table, and using a BCR
instruction. The values placed in this
table by the compiler are relative ad
dresses. Each value 1S modified by the
base address of the obiect module by the
linkage editor.

SUBPROGRAM ARGUMENT LISTS: This portion of
the object module contains the addresses of
the arguments for all subprograms called.
In calling a subprogram, the object module
uses general register 1 to transmit a
location in this table. The subprogram
then acquires the addresses of its argu
ments from that location and from as many
subsequent locations as there are argu
ment.s. The sign bit of the word containing
the address of the last argument for each
subprogram is set to one.

18

SUBPROGRAM ADDRESSES: This list contains
one--entry--for-each FUNCTION or SUB~OUTINE
subprogram referenced by the object module.
The entry will hold the address of that
subprogram when it is supplied by the
linkage editor. The compiler reserves the
correct amoun~ of space for the list, based
on the nun~er of subprograms referred to by
the source module.

EQUIVALENCE VARIABLES: This area of· the
obiect module contains unsubscripted
variables and arrays, listed in EQUIVALENCE
sets which do not refer to COMMON.

~~ALA~ ___ ~~!~~~~~: All non-subscripted
variables which are not in COMMON and are
not members of EQUIVALENCE sets appear in
this area of the Object module.

ARRAYS: All arrays which are not in
COMMON, and are not members of EQUIVALENCE
sets appear in this area of the object
module.

NAMELIST TABLES: For each NAMELIST name
and DISPLAtstatement in the source module,
a NAMELIST table is constructed hy the
compiler and placed in this area of the
object module. Each table consists of one
entry for each scalar variable or array
listed following the NAMELIST name or in
the DISPLAY statement, and begins with four
words of the following form:

---------T-------------------------------,
I By tel I
I Word I 1 2 3 4 J

~-------- -------------------------------i
I 1 I
I name field I
I 2 I I
I ~-------------------------------~
I 3 I I
I I not used I
I 4 I I L _________ ~ _______________________________ J

where the name field contains the NAMELIST
name, right justified. For the DISPLAY
statement, the name is DBGnn#, where nn is
the nunlber of the DISPLAY statement t"i t.hin
the source program or s~bprcgra~.

Table entries for scalar variables have
the following form:

---------T-------------------------------,
I By tel I
I W~rd I 1 2 3 4 I
~-------- -------------------------------~
I 1 I I
I I name field I
I 2 I I
I ~-------------------------------~
I 3 I address field I
I ~-----~-------T----------------~
I 4 I type I mode I not usei I L _________ ~~ _____ ~ _______ ~ ________________ J

where:

name field
contains the name of the scalar vari
able, right justified.

address field
contains the relative address of the
variable within the object module.

type ~ield
contains zero to indicate a scalar
variable.

mode field
contains the mode of the variable,
coded as fOlloWS:

2 Logical, 1 byte
3 Logical, fullword
4 Integer, halfword
5 Integer, fullword
6 Real, double precision
7 Real, single precision
8 complex, double precision
9 = Complex, single precision
A Literal (not currently

compiler-generated)

NAMELIST table entries for arrays have
the following form:

---------T-------------------------------,
I Byte I I
I word I 1 2 3 4 I
t--------- ----------------------------~~-i I 1 I ' I
, I name 'field I
I 2 I i
I ~-------------------------------~
I I I
I 3 I address field I
I ~-------T-------T-------T-------~
I I I I no. I I
I 4 ltype 1 mode Idimens·llength I
I ~-------+-------~-------~-------i
I lindica-Ifirst dimension factor I
I 5 I tor 'I field I
I ~-------~-----------------------~
J Inot jsecond dimension factorj

6 lused Ifield I
~-------+-----------------------i
Inot Ithird dimension factor I

7 I used I field I l _______ ~ _______________________ ~

I
I
I

etc. etc~ I l ___ J

where:

name field
contains the name of th~ arr3Y, right
justified.

address field
contains the
beginning of
object module.

mode field

relative address of the
the array within the

cont~ins the mode of the array ele
ments, coded as for scalar variables,
above.

no. dimens.
contains the number of dimensions in
the array; this value may be 1-7~

length field
contains the length of the array ele
ment in bytes.

indicator field
is set to zero if the array has been
defined to have variable dimensions;
otherwise, it is set to nonzero.

first dimension factor field
contains the total size of the array
in bytes.

second dimension factor field
contains the address of the second
multiplier for the array (nl*L, where
n1 is the size of the first dimension
in elements, and L is the number of
bytes per element).

Section 1: Introduction t.o the Co.mpiler 19

third dimension factor field
contains the address of the third
multiplier for the array (nl*n2*L,
where nl is the size of the first
dimension in elements, n2 is the size
of the second dimension, and L is the
number of bytes per element).

A final entry for each N~~ELIST table is
adde~ after the last variable or array name
to signify the end of that particular list.
This entry is a fullword in length and
contains all zeros.

LITERAL CONSTANTS: This area contains a
Iist--of--the-literal constants usej in the
source m01ule, except for those specified
in DATA and PAUSE statements.

F'ORt1AT STATEMENTS: The FORMAT statements
specified-in-the--source module are con
tained in tllis area of the object module.
The statements are in an encoded form in
the order of their appearance in the source
module. (See "Appendix D: Code Produced
by the Compiler.") The information contains
all specifications of the statement but not
the word FORr1AT.

TEMPORARY STORAGE AND CONSTANTS: This area
always begins on a double precision boun
dary and contains, in no specific order,
the constants required by the object module
code and the space for the storage of
temporary results during computations. Not
all of the source module constants neces
sarily appear in this area, since as many
constants as possible are used as immediate
data in the code produced. Some constants
may appear which are not present in the
source module, but which have been produced
by the compiler.

~RO~~~ __ ~~~~: If Lhe object module con
tains statement functions, the code for
these statements begins the program text
and is preceded by an instruction that
branches around them to the first execut
able statement of the program. (See
"Statement Functions" in Appendix D for
further explanation of this code.) Follow
ing the code for the statement functions is
the code for the executable statements of
the source module.

The object module produced by the
FORTRAN IV (G) compiler uses the System/360
general registers in the following way:

20

Register 0: Used as an accumulator.

Register 1: Used as an accumulator and
to hold the beginning address of the
argument list in branches to sub
programs.

Register 2: Used as an accumulator.

Register 3: Used as an accumulator.

Registers 4 through 7: Contain index
values as requirej for references to
array variables, where the SUbscripts
are linear functions of DO variables and
the array does not have variable
dimensions.

Registers 8 and 9: Contain injex values
as required for references to array
variables, where the subscripts are of
the form x+c, where x is a non DG
controlled variable and c is a constant.

Register 9: Contains index values as
required for references to array
variables where the subscripts are ~on
linear of the form I*J, wnere I and J
are the variaoles.

Registers 10 through 12: Contain ba~e
addresses loaded from the base table.

Register 13: Contains the beginning
address of the Object module save area;
this value is loaded at the beginning of
program execution. Register 13 is also
used for access to the base table, since
the base table follows the save area in
main storage.

Register 14: Contains the return
address for subprograms and holds the
address of branch target instructions
during the execution of branch
instructions.

Register 15: Contains the entry point
address for subprograms as they are
called by the object module.

SOURCE MODULE LISTING

The optional source module listing is a
symbolic, listing of the source module; it
contains indications of errors encountered
in the program during compilation. The
error message resulting from an erroneous
statement does not necessarily cause ter
mination of compiler processing nor tne
discarding of the statement. Recognizable
portions of declaration statements are
retained, and diagnosis always proceeds
until the end of the program.

OBJECT MODULE LISTING

The optional object module listing uses
the standard System/360 Operating System

assembler mnemonic operation codes and,
where possible, refers to the symbolic
variable names contained in the source
module. Labels used in the source module
are indicated at the appropriate places in
the object code listinq.

STORAGE MAPS

The optional storage map consists of six
independent listings of storage informa
tion. Each listing specifies the names and
locations of a particular class of vari
able. The listings are:

• COMMON variables

• EQUIVALENCE variables

• Scalar variables

• Array variables

• NAMELIST tables

• FORMAT statements

A list of the subprograms called is also
produced.

ERROR MESSAGES

Errors are indicated by listing the
statement in its original form with the
erroneous phrases or characters undermarked
by the dollar sign charact~r, followed by
comments indicating the type of the error.
This method is described in more detail in.
-Phase 1 of the Compiler: Parse (IEYPAR).-

Common Error Messages

The message NO CORE AVAILABLE is pro
duced (through IEYFORT) by all phases of
the compiler when the program being com
piled exhausts the main storage space
available to the compiler. This message is
produced only when the PRESS MEMORY routine
cannot provide unused main storage space on
request from the compiler.

The message ROLL SIZE EXCEEDED is pro
duced (through the Invocation phase,
IEYFORT) by all phases of the compiler when
the size of any single roll or rolls is
greater than per.itted. The following cir
cumstances cause this message to be
produced:

• The WORK roll exceeds the fixed storage
space assigned to it.

• The EXIT roll exceeds the fixed storage
space assigned to it.

• Any other roll, with the exception of
the AFTER POLISH roll and the CODE
roll, exceeds 64K bytes of storage. In
this case, the capacity of the ADDRESS
field of a pointer to the roll is
exceeded and. therefore, the informa
tion on the roll is unaddressable. The
AFTER POLISH and CODE rolls are
excepted, since pointers to these rolls
are not required.

The compilation terminates following the
printing of either of these messages.

COMPILER DATA STRUCTURES

The POP language is designed to manipul
ate certain well-defined data structures.

Rolls, which are the tables primarily
used by the compiler, are automatically
handled by the POP instructions; that is,
when information is moved to and from
rolls, controls indicating the status of
the rolls are automatically updated.

Items (variables) with fixed structures
are used to maintain control values for
rolls, to hold input characters being pro
cessed, and to record Polish notation, etc.
These item structures are also handled
automatically by the POP instructions.

The arrangement of the parts of the
compiler is significant because of the
extensive use of relative addressing in the

. compiler. General registers are us~d to
hold base addresses, to control some rolls,
and to assist in the interpretation of the
POP instructions.

ROLLS AND ROLL CONTROLS

Most of the tables employed by the
compiler are called rolls. This term de
scribes a table which at any point in time
occupies only as much storage as is
required for the maximum amount of informa
tion it has held during the present compi~
lation (exceptions LO this rule are noted
later). Another distinctive feature of a
roll is that it is used so that the last
information placed on it is the first
information retrieved it uses a ·push
up' logic.

Section 1: Introduction to the Compiler 21

With the exception of the WORK and EXIT
rolls, the rolls of the compiler are main
tained in an area called the roll storage
~rea. The rolls in this area are both
~i~~d and numbered. While the references
to rolls in this document and in the
compiler comments are primarily by name,
the names are converte1 to corresponding
numbers at assembly time and the rolls are
arranged in storage an~ referred to by
n1lrrber.

If the roll storage area is considered
to be one block of continuous storage, the
rolls are placed in this area in ascending
sequence by roll number; that is, roll 0
begins at the base address of the roll
storage a rea; rolls 1, 2, 3, etc.. follow
roll zero in sequence, with the roll whose
number is largest terminating the roll
storage area.

Initially, all rolls except roll 0 are
pmpty and occupy no space; this is accomp
lished by having the beginning and end of
all rolls locaterl at t.he same place. (Roll
0, the LIB roll, is a fixed-length roll
which contains all of its data initially.)
Ahen information is to be placed on a roll
and no space is available due to a conflict
with the next roll, rolls greater in number
than the roll in question are moved down
(to higher addresses) to make the space
available. This is accomplished by physic
ally moving the information on the rolls a
fixed number of storage locations and alt
ering the controls to indicate the change.
Thus, roll 0 never changes in size, loca
tion, or contents: all other rolls expand
to higher addresses as required. When
information is removed from a roll, the
space which had been occupied by that
information is left vacant; therefore, it
is not necessary to move rolls for each
addition of information.

With the exception of the area occupied
by rollO, the roll storage area actually
consists of any number of non-contiguous
blocks of 4096 bytes of storage. The space
required for roll 0 is not part of one of
these blocks. Additional blocks of storage
are acquired by the compiler whenever cur
rent roll storage is exceeded. If the
system is unable to fulfill a request for
roll storage, the PRESS MEMORY routine is
entered to find roll space that is no
longer in use. If 32 or more bytes are
found, the compilation continues. If fewer
than 12 bytes are found, the compilation of
the current program is terminated, the
message NO CORE AVAILABLE is printed, and
space is freed. If there are multiple
programs, the next one is compiled.

The following paragraphs describe the
controls and statistics maintained by the
compiler in order to control the storage

22

allocation for rolls and the functioning of
the "push up" logic.

ROLL ADR Table

The ROLL ADR table is a 1000-byte, table
maintained in IEYROL. Each entry in this
table holds the beqinning address of a
block of storage which has been assigned to
the roll storage area. The first address
in the table is always the beginning
address of roll O. The second address is
that of the first 4K-byte block of storage
and, therefore, the beginning address of
roll 1. Initially, the last address
recorded on the table is the beginning
address of a block which holds the CODE and
AFTER POLISH rolls, with the CO~roll
begInning--at the first location in the
block.

As information is recorded on rolls
during the operation of the compiler, addi
tional storage space may eventually be
required. Whenever storage is needed for a
roll which precedes the CODE roll, an
addi t.ional 4K block is reques ted f rom the
system and its address is inserted into the
ROLL ADR table immediately before the entry
describing the CODE roll base. This inser
tion requires that any entries describing
the CODE and AFTER POLISH rolls be moved
down in the ROLL ADR table. The informa
tion on all rolls following (greater in
number than). the roll requiring the space
is then moved down a fixed number of words.
The roll which immediately precedes the
CODE roll moves into the new block of
storage. This movement of the rolls
creates the desired space for the roll
requiring it. The movement of rolls does
not respect roll boundaries; that is, it is
entirely possible that any roll or rolls
may bridge two blocks of storage.

When - additional storage space is
required for the AFTER POLISH roll, a block
is requested from the· system and its begin
ning address is added to the bottom of the
ROLL ADR table. When the CODE roll
requires more space, a new block is added
in the same manner, the AFTER POLISH roll
is moved down into the new block, and the
vacated space is available to the CODE
roll.

The CODE and AFTER POLISH rolls are
handled separately because the amount of
information which can be expected to reside
on them makes it impractical to move them
frequently in order to satisfy storage
requirements for all other rolls. The CODE
roll is also somewhat unique in that it is
assigned a large amount of space before it
is used: that is, the AFTER POLISH roll

does not begin at the same location as does
the CODE roll.

BASE, BOTTOM, and TOP Tables

In order to permit dynamic allocation as
well as to permit the use of the "push up"
logic, tables containing the variables
BASE, BOTTOM, and TOP are maintained to
record the current status of each of the
rolls. These variables indicate addresses
of rolls. Information stored on rolls is
in units of fullwords; hence, these
addresses are always multiples of four.
The length of each of the tables is deter
mined by the number of rolls, and the roll
number is an index to the appropriate word
in each table for the roll.

Each of the variables occupies a full
word and has the following configuration:

o
1 1
1 2

1 2
9 0

3
1

r-------------T------------T--------------,
I IEntry number' I
I linto the I Displacement I
I ,ROLL ADR '(12 bi ts) ,
, I Table I I l _____________ i ____________ i ______________ J

The entry number points to an entry in the
ROLL ADR table and, hence, to the beginning
address of a block of roll storage. The
displacement is a byte count from the
beginning of the indicated storaqe block to
the location to which the variable (BASE,
BOTTOM, or TOP) refers.

It is significant to note that the
displacement field in these variables occu
pies twelve bits. If the displacement
field is increased beyond its maximum value·
(4095), the overflow increases the entry
number into the ROLL ADR table; this is the
desired result, since it simply causes the
variable to point to the next entry in the
table and effectively indicate the next
location in the roll storage area, the
beginning of the next block.

The first status variable for each roll,
BASE, indicates the beginning address of
that roll, minus four. The second vari
able, BOTTOM, indicates the address of the
most recently entered word on the roll.

If the roll is completely empty, its
BOTTOM is equal to its BASE; otherwise,
BOTTOM always exceeds BASE by a multiple of
four. Figure 7 illustrates a roll which
contains information.

4 bytes

BASE en) l_> r---------------l<-----unused

TOP (n) j I I
~---------------~~ t---------------1 .
~---------------~
~---------------~
I 'K bytes , ,
I I
~---------------~

BOTTOM(n)---->l _______________ J~

Figure 7. Roll. Containing K Bytes of
Information

When information is to be added to a
roll, it is stored at the address pOinted
to by BOTTOM, plus four, and BOTTOM is
increased by four. When a word is to be
retrieved from a roll, it is read from the
address specified by BOTTOM, and, under
most circumstances, BOTTOM is reduced by
four, thus indicating that the word is no
longer occupied by the roll. This altera
tion of the value of BOTTOM is terIDed
E£~~!~g. If the informatio~ retrieved from
a roll is to remain on the roll as well as
at the destination, BOTTOM is not changed.
This operation is indicated by the use of
the word "keep" in the POP instructions
that perform it.

The current length (in bytes) .of a roll
is determined by subtracting its BASE from
its BOTTOM. Note that this is true even
though the entry number field appears in
these variables, since each increase in
entry number indicates 4096 bytes occupied
by the roll. Thus, there is no limitation
on the size of a roll from this source.

For each roll, an additional status
variable, called!QE, is maintained. TOP
enables the program to protect a portion of
the roll from destruction, while allowing
the use of the roll as though it were
empty. Protecting a roll in this way is
calle~ reserving the roll. The contents of
TOP (always greater than or equal to the
contents of BASE) indicate.a false BASE for
the roll •. The area between BASE and TOP,
when TOP does not equal BASE, cannot be
altered or removed from the roll. Ascend
ing locations from TOP constitute the new,
empty roll.

Like BASE, TOP points to the word imIDe
diately preceding the first word into which
information can be stored. A value is
automatically stored in this unused word
when the roll is reserved; the value is the
previous value of TOP, minus the value of
BASE and is called the reserve mark.
Storage of this value permits-more than one
segment of the roll to be reserved.

Section 1: Introduction to the Compiler 23

A single roll (roll n), then, containing
K bytes of information, (where K is always
a multiple of four) and having no reserved
status, has the following settings for its
status variables:

BOTTOM = BASE + K = TOP + K

Figure 7 also illustrates this roll. If
the same roll contains L bytes reserved and
K additional bytes of information, the
settings of its status variables are as
follows:

BOTTOM = TOP + K = BASE + L + K + 4

This roll is shown in Figure 8.
the relationships given above
because of the structure of
BOTTOM, and TOP variables.

4 bytes
r---------------,

Note that
are valid

the BASE,

BASE (n)----->I I <---unused

r~~~~~~~~~~~~~~~~l
~---------------~
I • I
I • I L bytes

t-------~-------1)
~---------------~
I I
~---------------~

TOP (n)------>I I <---previous
~--------------- TOP-BASE
I I
~---------------~
I I
~---------------~
I I
I ,K bytes
I I
~---------------~
I I
~---------------~ , I
~---------------~

BOTTOM (n)--->I I l ______________ _

Figure 8. Roll Containing L Bytes of Re
served Information and K Bytes
of New Information

Special Rolls

The WORK roll and the EXIT roll are
special rolls in that they are not main
tained in the roll storage area, but rather
appear in IEYROL with a fixed amount of
storage allocated to each. They are rolls

24

in the sense that they employ the same push
up logic which is used for the other rolls;
however, they are not numbered, and their
controls are, therefore, not maintained in
the tables used for the other rolls.

The WORK roll is used as a temporary
storage area during the operations of the
compiler. Because information 1S moved to
and from the roll frequently it is handled
separately from other rolls.

The EXIT roll warrants special treatment
because it is used frequently in maintain
ing exit and entrance addresses for compil
er routines.

The bottom of the WORK roll is recorded
in general register 4, WRKADR; general
register 5, EXTADR, holds the address of
the bottom of the EXIT roll. These values
are absolute addresses rather than in the
format of the BOTTOM varia.ble recorded for
other rolls.

For a more detailed explanation of the
WORK and EXIT rolls, see Appendix B "Rolls
Used by the Compiler."

CENTRAL ITEMS: The items SYMBOL 1, SYMBOL
2, SYMBOL 3, DATA 0, DATA 1, DATA 2, DATA 3
and DATA 4,. two bytes each in length, -and
DATA 5, eight bytes in length, contain
variable names and constants. These items
are called central due to the nature and
frequency of their use. They occupy
storage in the order listed, with DATA 1
aligned to a doubleword boundary_

In general, SYMBOL 1, 2, and 3 hold
variable names; DATA 1 and 2 are used to
hold real constants, DATA 3 and 4 to hold
integer constants, DATA 1, 2, 3 and 4 to
hold double precision and complex con
stants, and DATA 1, 2,' 3, 4 and 5 to hold
double-precision complex constants.

GROUPS: While the basic unit of infor~a
tion stored on rolls is a fullword, many
rolls contain logically connected informa
tion which requires more than a singleword
of storage. Such a collection of infor~a
tion is called a group and always occupies
a multiple of four bytes. A word of a
group of more than one word is someti~es

called a rung of the group.

Regardless of the size of the group on a
given roll, the item BOTTOM for the roll
always points to the last' word on the roll.
Figure 9 shows a roll with a group size of
twelve.

4 bytes

[---------------1 < __ {BASE (n)

~---------------i .TOP (n)
(I I

1st group ~ t---------------1
~---------------i
I I

)~---------------~

\ ~---------------~
2nd group t ~---------------1

,~---------------i

~---------------i
3rd group 1· ~---------------1

I I <-- BOTTOM (n) L _______________ J

Roll With a Group Size of
Twelve

For some rolls, the size of the group is
not fixed. In these cases a construct
called a "plex" is used. The first word of
each plex holds the number of words in the
plex, exclusive of itself; the remainder
holds the information needed in the group.
(See Figure 10.)

4 bytes
r-------------,

BASE (n)t , I <---no. words
l->~-------------i in group

TOP (n)' ~-------------i
I 3 ,

~-------------i
t-------------11 group

~-------------iL information
I , ,
~-------------i
I 4 I
~-------------i
I I
~-------------i
I I plex
~-------------~
I I
~-------------i
I I
~-------------i '
~II ------:------ill t

plex

BOTTOM (n) t-------------1~ L _____________ J

Figure 10. Roll with Variable Group Size

The assignment of roll storage does not
respect group boundaries; thus, groups may
be split between two blocks of roll
storag4!.

• GROUP STATS: Since the size of the group
varies from roll to roll, this charac
teristic of each roll must be tabulated in
order to provide proper manipulatio~ of the
roll. In addition, the groups on a roll
are frequently searched against the values
held in the central items (SYMBOL 1, 2, 3,
etc.,). Additional characteristics of the
roll must be tabulated in order to provide
for this function. Four variables tabu
lated in the group stats tables are
required to maintain this information.
(See Section 2 "IEYROL Module.")

The first group stats table contains a
1-word entry for each roll. The entry is
divided into two halfword values~ The
first of these is the displacement in bytes
from SYMBOL 1 for a group search; that is,
the number of bytes to the right of the
beginning of SYMBOL 1 from which a compara
tive search with the group on the roll
should begin. This value is zero for rolls
which contain variable names (since these
begin in SYMBOL 1), eight for rolls which
contain real, double-precision, complex or
double-precision complex constants (since
these begin in DATA 1),. and twelve for
rolls which contain integer constants.

The second value in the first group
stats table is also a displacement; the
distance in bytes from the beginning of the
group on the roll to the byte from which a
comparative search with the central items
should begin.

The second group stats table also holds
a 1-word entry for each roll; these entries
are also divided into two halfword' values.
The first of these is the number of conse
cutive bytes to be used in a comparative
search, and refers to both the group on the
roll and the group in the central items
with which it is being compared.

The second item in the second tab"e is
the size of the group on the rell, in
bytes. For rolls which hold plexes, the
value of this item is four.

For example, the DP CONST roll, which is
used to hold the double-precision constants
required for the object module, has an
8-byte group. . The settings of the Group
Stats for this roll are 8, 0, 8, and 8,
respectively. The first 8 indicates that
when this roll is searched in comparison
with the central items, the search should
begin eight bytes to the right of SYMBOL 1
(at DATA 1). The 0 indicates that there is
no displacement in the group itself; that
is, no information precedes the value to be
compared in the group. The second 8 is the
size of the value to be searched. The
final 8 is the number of bytes per group on
the roll.

Section 1: Introduction to the Compiler 25

The group stats for the ARRAY roll
<which holds the names and dimension infor
mation of arrays) are 0, 0, 6, and 20.
They in~icate that the search begins at
SYMBOL 1, that the search begins 0 bytes to
the right of the beginning of the group on
the roll, that the number of bytes to be
searched is 6, and that the group 6 size on
the roll is 20 bytes.

Figures 11 and 12 show the two group
stats tables containing the information on
the OP CONST roll and the ARRAY roll
discussed above. It should be noted that
the information contained on these two
tables is arranged according to roll num
bers. In other words, the group stats for
roll 5 are in the sixth entry in the tables
(starting with entry number 0).

" bytes
r-----------T------------,
~-----------+------------~
~-----------~------------~
1 1
1 1
1 I
~-----------T------------~

OP CONST rOII--->1 81 01
~-----------~------------~
I I
I I
1 J
~-----------T------------i

ARRAY rOII--->1 01 01
~-----------~------------~
1 1
1 I
1 I
~-----------T------------~ l ___________ ~ ____________ J

Figure 11. First Group Stats Table

4 bytes
r-----------T------------,
~-----------+------------i
~-----------~------------i
1 1
1 I
1 1
~-----------T------------~

OP CONST roll--->1 81 81
~-----------~------------~
I 1
1 J
1 I
~-----------T------------~

ARRAY roll--->I 61 201
~-----------~------------~
1 I
I 1
I I
~-----------T------------~ l ___________ ~ ____________ J

Figure 12. Second Grcup Stats Table

26

OTHER VARIABLES

In addition to the central items,
several other variables used in the compil
er perform functions which are significant
to the understanding of the POP instruc
tions. These are described in the follow
ing paragraphs.

The variable ANSWER BOX, which is re
corded in the first byte of the first word
of each EXIT roll group, is used to hold
the true or false responses from POP
instructions. The value "true" is repre
sented by a nonzero value in this variable,
ana "false" by zero. The value is checked
by POP jump instructions.

Most of the arithmetic performed in the
compiler is full word arithmetic. When
double-precision arithmetic is required,
the variables MPAC 1 and MPAC 2, four bytes
each in length, are used as a double
precision register. These variables are
maintained in main storage.

Scan Control

Several variables are used in the
character scanning performed by the first
processing phase of the compiler, Parse •

. Their names, and terms associated with
their values, are frequently used in
describing the POP instructions.

The variable CRRNT CHAR holds the source
statement character which is currently
being inspected; the variable is four bytes
long. The position (scan arrow) of the
current character within the input state
ment (its column number, where a continuous
column count is maintained over each state
ment) is held in the low-order bit posi
tions of the fullword variable CRRNT CHAR
CNT.

Non-blank characters are called "active
characters," except when literal or IBM
card code information is being scanned.
The variable LAST CHAR CNT, which occupies
one word of storage, holds the column
number of the active character previous to
the one in CRRNT CHAR.

1
Column number: 1234567890

t~121~!!~tiQ!2:

DO 50 1 = 1, 4
A(1) == B(1)··2
DO 50 J==l, 5

50 C(J+l) == A(n

In thp. processing of the source module
which contains the above statements, state
ment 50 is currently, being parsed. The
current character from the input buffer is
J. The settings of the scan control
variables are shown in Figure 13.

r---,
I (EBCDIC) J I l ___ J

CRRNT CHAR

r---,
1 9 1 L ___ J

CRRNT CHAR CNT
(scan arrow)

r---,
I 1 8 I L ___ J

LAST CHAR CNT

Figure 13. Scan Control Variables

Several flags are used in the compiler.
These i-word variables have two possible
values: on, represented by nonzero, and
off, represented by zero. The name of the
flag indicates the significance of the "on"
setting in all cases.

Quotes

Quotes are sequences of characters pre
ceded by a halfword character count; they
are compared with the input data to deter
mine a statement type during the Parse
phase. These constants are grouped
together at the end of phase 1. The
location labeled QUOTE BASE is the begin
ning location of the first quote; instruc-

tions which refer to quotes are assembled
with address fields which are relative to
this location.

Figure ~4 shows some of the quotes used
by the compiler and how they are arranged
in storage.

4 bytes

r------------------------------·
QUOTE BASE i 00 02 N D i

~------------------------------~ I 00. 08 I M I
.------------------------------~
lEN S 1 I
.------------------------------i
rON b b I
~------------------------------~ t 00 07 M P I
.~-----------------------------i I LIe I I
~------------------------------~ I T b b b I
.------------------------------i I 00 07 L 0 I
~-------------~----------------~ r G I . C A I
.------------------------------i I L b b b I
~------------------------------~
I I
I I
I I
.------------------------------i
I 00 06 F 0 I
~------------------------------~
r R MAT I
t------------------------------i
t I
I I
t I L ______________________________ J

Figure 14. Quotes Used in the Compiler

Messages

The messages used in the compiler, which
are also grouped together at the end of
Phase 1, are the error messages required by
Parse for the source module listing. The
first byte of each message holds the condi
tion code for the error described by the
message. The second byte of the message is
the number of bytes in the remainder of the
message. The message follows this halfword
of information.

The location labeled MESSAGE BASE is the
beginning location of the first message;
instructions which refer to messages are
assembled with address fields relative to
this location.

Section 1: Introduction to the Compiler 27

COMPILER ARRANGEMENT AND GENERAL REGISTER
USAGE

Figure 15 shows the arrangement of the
compiler in main storage with the Parse
phase shown in detail. General registers
that hold base locations within the compil
er are shown pointing to the locations they
indicate. Note that the labels CBASE and
PROGRAM BASE 2 appear in each phase of the
compiler; the general registers CONSTR and
PGB2 contain the locations of those labels
in the operating phase.

General register 2, PGB2, holds the
beginning address of the g!Qba~me_~~bl~,
a table containing the addresses of compil
er routines which are the targets of jump
instructions. (See Appendix A for further
discussion of this table and the way in
which it is used.) The global jump table
appears in each phase of the compiler and
is labeled PROGRAM BASE 2; thus, the value
held in general register 2 is changed at
the beginning of each phase of the
compiler.

r------------T------------------T--,
1 Register 1 Label I Contents I
~------------L------------------L---------------------_______________________ ~
I Invocation Phase I
~------------T------------------T--~ low
) POPPGB--->I POP TABLE I POP Jump Table I storage
\ I ~--~
\ \ POP SETUP \ POP Machine Language Subroutines)
I) ~--~) \ I Data for POP Subroutines I
~------------f------------------+--~
\ ROLLBR--->\ ROLL BASE) Roll Statistics (Bases, Tops, Bottoms)' \
\ I ~--~---~
I I 1 Group Stats (Displacements, Group sizes) I
I I ~--~
I I I WORK Roll I
I I ~--~
I 1 I EXIT Roll I
) I ~--~
I \ I ROLL ADR Table)
\ I ~--~
1 \ \ Roll Storage \

I I I Roll Storage. I
~------------f------------------+--~
I CONSTR--->1 CBASE I Parse Data Items I
I I ~--~
I I I Parse Routines I
I I ~--~
\ PGB2----->\ PROGRAM BASE 2 I Parse Glob~l Jump Table \

\ I ~--~
1) I Parse Routines containing assembler I
I I I language branch targets \

I \ ~--~) I QUOTE BASE I Quotes I
I I ~--------------------------------.------------~
I I MESSAGE BASE I Messages)
~------------L------------------L---------------------_______________________ ~
I PHASE 2: Allocate 1
~--~
) PHASE 3: Unify)

~--~
) PHASE 4: Gen I
t--~ I PHASE 5: Exi t)
~--~
I.Roll storage is allocated in 4K-byte blocks, beginning from the higher end)
I of storage contiguous with Parse. Additional blocks are obtained, as)
I needed, from' preceding (lower) 4K-byte blocks of storage. I l __ J

Figure 15. Compiler Arrangement with Registers

28

high
storage

Compiler routines which contain assem
bler language instructions and are either
branched to by other assembler language
instructions or which themselves perform
internal branches, follow the global jump
table. General register 2 is used as a
base register for references to both the
global jump table and these routines.
Figure 15 shows this register in Parse.

General register 3, called POPADR in the
compiler code, is used in the sequencing of
the POP operations. It holds the address
of the current POP, and is incremented by 2
as each POP is interpreted.

General register 4, called WRKADR, holds
the address of the current bottom of the
WORK roll.

General register 5, called EXTADR, holds
the address of the current bottom of the
EXIT roll.

General register 6, called POPXIT, holds
the return location for POP subroutines.
When POPs are being interpreted by POP
SETUP, the return is to POP SETUP: when
machine language instructions branch to the
POPs, it is to the next instruction.

General register 7, 'called ADDR, holds
the address portion of the current POP
instruction (eight bits); it is also used
in the de~oding of the operation code
portion of POP instructions.

General register 8, called POPPGB, holds
the beginning address of the machine lan
guage code for the POP instructions and the
POP jump table. Figure 15 shows this
register, which is used as a base for
references to these areas.

General register 9, called CONSTR, holds
the beginning address of the data referred
to by the compiler routines. This area
precedes the routines themselves, and is
labeled CBASE, as indicated in Figure 15.
This register is, therefore, used as a base
register for references to data as well as
for references to the routines in the
compiler; its value is changed at the
beginning of each phase.

General register 10,
beginning address of the
is, the beginning address
(see Figure 15). The
register remains constant
operation of the compiler.

ROLLBR, holds the
roll area; that
of the base table
value in this

throughout the

General register 11, RETURN, holds
return addresses for the POP subroutines.

The remaining general registers are used
temporarily for various purposes in the
compiler.

POINTERS

Information defining a source module
variable (its name, dimensions, el:..c.) is
recorded by the compiler when the name of
the variable appears in an Explicit speci
fication or DIMENSION statement. For
variables which are not explicitly defined,
this information is recorded when the first
use of the variable is encountered. All
constants are recorded when they are first
used in the source module.

All references to a given variable or
constant are i"ndicated by a pointer'to the
location at which the information defining
that variable or constant is stored. The
use of the pOinter eliminates redundancy
and saves compiler space.

The pointer is a l-word value in the
following format:

I byte I byte 2 bytes

r---------T----------y--------------------,
I TAG I OPERATOR I ADDRESS I L _________ ~ __________ ~ ____________________ J

where:

TAG
is a i-byte item whose value is repre
sented in two parts: MODE, occupying
the upper four bits, indicates whether
the variable or constant is integer,
real, complex or logical; SIZE, indi
cated in the lower four bits, speci
fies the length of the variable or
constant (in bytes) minus one. (See
Figure 15.1).

r-------T-------------T-------T-----------,
!Value I MODE I Value I SIZE I
r-------f-------------t-------t--------~--~
I 0 I Integer I 0 I 1 byte I
J 1 I Real I 1 I 2 bytes I
I 2 I Complex I 3 I 4 bytes I'
I 3 I Logical I 7 I 8 bytes I
J 4 I Literal/ I F I 16 bytes I
I I Hexadecimal I I I l _______ ~ ______ . _______ ~ _______ ~ ___________ J

Figure 15.1 TAG'Field MODE and SIZE Values

OPERATOR
is a 1-byte item which contains the
roll number of the roll on which the
group defining the constant or vari
able is stored.

ADDRESS
is a 2-byte item which holds the
relative address (in bytes) of the
group which contains the information
for the constant or variable; the
address is relative to the rop of the
roll.

section 1: Introduction to the Compiler 29

The pointer contains all the information
required to determine an absolute location
in the roll storage area. The roll number
(from the OPERATOR field) is first used as
an index into the TOP table. The ADDRESS
field of the pointer is then added to the
TOP, and the result is handled as follows:

1. Its entry number field (bits 12
through 19) is used as an index into
the ROLL ADR table.

2. Its displacement field (bits 20
through 31) is' added to the base
address found in the ROLL ADR table.
The result of step 2 is the address
indicated by the pointer.

~ple: Using a pointer whose OPERATOR
field contains the value 2 and whose
ADDRESS field contains the value 4, and the
following tables:

TOP ROLL ADR
r----T----T-----' r---------------,

o I I I , o I I
~---f----+-----~ ~---------------~

1 I I I I 1 I I
2 I I 2 I 20 I 2 I 1000 I

~---~----~-----~ ~---------------~
I I I I
I , I I
I I I I
I I I I

the 10cat10n 1024 is determined. Note that
for larger values in the pointer and in
TOP, the entry number field of TOP can be
modified by the addition of ADDRESS. In
this case the result of the addition holds
2 and 24 in the entry number and displace
ment fields, respectively.

Since relative addresses are recorded in
po~nters, it is not necessary to alter a
p01nter when the roll pointed to is moved.
No~e also that the relative address in the
po1nter may exceed 4096 bytes with no
compli~a~ion.of the addressing scheme. The
only l1m1tat10n on the size of a roll comes
a?out because of the size of the ADDRESS
f1eld of the pointer: 16 bits permit
values less than 64K bytes to be
represented.

30

For the purposes of object code genera
tion, the mode and size of the constant or
variable is available to influence the type
of operations which can be employed, e.g.,
integer or floating, fullword, or
doubleword.

DRIVERS

In the generation of Polish notation
from the source language statements,
"drivers" are also used. These "drivers"
are values that are one word long and have
the same format as the pointer. The t'wo
types of drivers used by the compiler are
discussed in the following paragraphs.

Operation Drivers

One type of driver is the operation
driver, which indicates arithmetic or log
icar--operations to be performed. The
fields of the driver are:

TAG
is a 1-byte item whose value is repre
sented in two parts: MODE, occupying
the upper four bits, indicates the
mode ,of the operation, e.g., integer,
floating-point, complex or logical;
SIZE, indicated in the lower four
bits, specifies the length of the
result of the operation (in bytes)
minus one.

OPERATOR
is a 1-byte item containing a value
which indicates the operation to be
performed, e.g., addition, subtrac
tion, etc. The values for OPERATOR
are larger than the number of any
roll, and hence, also serve to distin
guish a driver from a pointer.

ADDRESS
is a 2-byte item containing a value
which indicates the "forcing strength"
of the operation specified by the
driver; its values range from zero to
ten.

The forcing strengths associated with
the operation drivers are given in Table 1.

Table 1. Internal Configuration of Opera-
tion Drivers

r--------------T----T--------T------------,
, 'I' AD!2RES§ I
, I I I (Forcing I
iDri~r il~~~iQ~fRATORiStrength) i
~--------------+----+--------+------------~
ISprog2 , 00 I 40 I 00 00 I
~--------------+----+--------+------------~
I Power I 00 I 42 I 00 01 I
~--------------+----+--------+------------~
lUnary Minus I 00 I 43 I 00 02 I
~--------------+----+--------t------------~
I Multiply I 00 I 44 I 00 03 I
~--------------+----+--------+------------~
'Divide I 00 I 45 I 00 03 I
t--------------f----+--------t------------1
I Ad d I OO! 4 b I 00 04 1
~--------------+----+--------t------------~
I subtract I 00 I 47 I 00 04 I
~--------------+----+--------+------------~
IGT I 00 I 48 ,00 05 l
t--------------+----+--------+------------~
I GE I 00 I 49 I 00 05 I
~--------------+----+--------+------------~
I LT I 00 I 4A I 00 05 I
t--------------+----+--------+------------~
I LE I 00 I 4 B I 00 05 J
~--------------+----+--------+------------~
I EQ . I 00 I 4 C I 00 05]

~--------------+----+--------+------------~
I NE I 00 I 4 D I 00 05 I
~--------------+----+--------+------------~
I NOT I 00 I 4E I 00 06 I
~--------------+----+--------+------------~
I AND I 00 I 4F I 00 07 I
~--------------+----+--------+------------~
lOR I 00 I 50 I 00 08 I
t--------------+----+--------+------------~
I Plus and Below I I I I
I Phony3 I 00 I 3F I 00 09 I
~--------------+----+--------+------------~
IEOE~ I 00 I 3F I 00 OA I
t--------------~----~--------~------------1
11The MODE and SIZE settings are placed in1
I the driver when it is used. I
12Indicates a function reference. I
13 Used to designate the beginning of ani
I expression. I
J~Means "end of expression" and is used I
I for that purpose. I l ___ J

Control Drivers

The other type of driver used in the
genera~i~n.of Polish notation is ca~led the
control dr1ver. It is used to injicate tht
type-;f~he-statement for which code is to
be written. The control driver may also
designate some other control function such
as an I/O list, an array reference, or an
error linkage.

The fields of the control driver differ
from those of the operation driver in that
zero is contained in the TAG field, 255 in
the OPERATOR field (the distinguishing mark
for control drivers), and a unique value in
the ADDRESS field. The value in the
ADDRESS field is an entry nurr~er into a
table of branches to routines that process
each statement type or c.ontrol function; it
is used in this way during the operations
of Gen. The formats of the operation
drivers and control drivers are given in
Appendix E.

Table 1 lists the operation drivers and
the values contained in each field. The
control drivers are given in Table 2. The
ADDRESS field is the only field given
because the TAG and OPERATOR fields are
constant. All values are represented in
hexadecimal.

Section 1: Introduction to the Compiler 31

Table 2~ Inter~al Configuration of Con- Table 2. Intprnal Con~iquration of Con-
trol Drivers (Part 1 of 2) trol Drivers (Part 2 of 2)

r----------------------------T------------, r----------------------------T------------,
I I I I I I
I QE!y~E I ~~Q~~§§ I I QE!yer I ~Q~~~~ I
I I I I I I
~----------------------------+------------~ .----------------------------+------------~
I AFDS I 8 I I ERK= I 210 I
~----------------------------+------------~ ~----------------------------+------------~
I ARKAY I 23C I I FXP and "kG I 4eO I
~----------------------------+------------~ .----------------------------t------------~
I ASSIGN I 20 I I FIND I 4C I
~----------------------------+------------~ t----------------------------+------------~
I ASSIGNZD GO TO I 1C I I FORJvJ\T I 208 I
~----------------------------+------------i .----------------------------t------------~
I ASSIGNMENT I 4 1 I FORM~T STA I 30 I
~----------------------------+------------~ ~----------------------------+------------~
I AT I 68 I I GOTO I 14 I
.----------------------------+------------1 t----------------------------+------------~
I BSREF I 34 I J IF I 24 I
~----------------------------+------------~ t----------------------------+------------~
I CALL I 2C I I IOL no CLOSE I 218 I
.----------------------------+------------~ t----------------------------t------------~
I CGOTO I 18 I 1 IOL DO DATA I 21C I
~----------------------------+------------~ .----------------------------+------------~
I CONTINUE I 28 I I 10 LIST I 214 I
~----------------------------+------------~ t----------------------------t------------~
I DATA I 3C J 1 LOGICAL IF I 60 I
~----------------------------+------------~ .--------------------------~-+------------~
I DEFINE FILE I 44 I I NAMELIST I 204 I
.----------------------------+------------~ t----------------------------t------------~
J DIRECT 10 I 200 I I PAUSE I 38 I
~----------------------------+~-----------~ t----------------------------+------------~
I DISPLAY ID I 74 I I READ W~ITE I 48 I
.----------------------------+------------~ t----------------------------t------------~
J DO I 10 I J RETURN I 50 I
~----------------------------+------------~ t----------------------------+------------~
I DUr-t\1Y I 68 J I STANDARD PkINT UNIT I 234 I
.----------------------------+------------~ t----------------------------t------------~
I END I C I J STANDARD PUNCH UNIT I 238 I
.----------------------------+------------~ .----------------------------+------------~
I END= I 20C I J STANDArtD RZAD UNIT I 230 I
~----------------------------+------------~ t----------------------------t------------~
I ERROR LINK 1 I 54 1 J STOP I 64 I
.----------------------------+------------~ t----------------------------+------------~
I EKrtOR LINK 2 I 58 I I SUBPROGRAM I 40 I
.----------------------------+------------~ t----------------------------+------------~
I ERROR LINK 3 I 5C I I TRACE OFF I 70 I L ____________________________ ~ ____________ J

t----------------------------+------------~
I TRACE ON I bC I L ____________________________ ~ ____________ J

32

This section describes in detail the
Invocation phase and the five processing
phases of the compiler and their operation.
The I~YROL module is also described.

INVOCATION PHASE (IEYFORT)

The Invocation phase is the compiler
control phase and is the first and last
phase of the compiler. (The logic of the
phase is illustrated in Chart 00.) If the
compiler is invoked in an EXEC statement,
control is received from the operating
system control program. However, control
may be received from other programs through
use of one of the system macro instruc
tions: CAL~, LINK, or ATTACH.

IEYFORT performs compiler initializa
tion, expansion of roll storage assignment,
input/output request processing, and com
piler termination. The following para
graphs describe th~se operations in greater
detail.

IEYFORT, CHART 00

IEYFORT is the basic control routine of
the Invocation phase. Its operation i~
invoked by the operating system or by
another program through either the CALL,
LINK, or ATTACH macro instructions. Tne
execution of IEYFORT includes scanning the
specified compiler options, setting the
ddnames for designated data sets, initia
lizing heading information, and acquiring
time and date information from the system.

IEYFORT sets pointers and indicators to
the options" data sets, and heading infor
mation specified for use by the compiler •.
The options are given 1n 40 or fewer
characters, and are preceded in storage by
a binary count of the option information.
This character count immediately precedes
the first location which contains the
option data. The options themselves are
represented in EBCDIC.

On entry to IEYFORT, general register 1
contains the address of a group of three or
fewer pointers. Pointer 1 of the group
holds the beginning address of an area in
storage that contains the execute options
specified by the programmer (set in the
OPTS CAN routine).

SECTION 2: COMPILER OPERATION

Pointer 2 contains the address of the
list of DO names to be used by the compiler
(set in the DDNAMES routine).

Pointer 3 contains the address of the
headinq information. Headinq data may
designate such information as the continua
tion of pages, and the titles of pages.

If the FORTRAN compiler is invoked by
the control program (i.e., called by the
system), pointers 2 and 3 are not used.
However, if the compiler is invoked by some
other source, all pointers may be used.
The latter condition is determined through
an interrogation of the high order bit of a
pointer. If this bit is set, the remaining
pointers are nonexistent. Nevertheless,
pointers 1 and 3 may exist while pointer 2
is nonexistent; in this case, pointer 2
contains all zeros.

During the operation .of I EYFCRT, the
SYSIN and SYSPRINT data sets are always
opened through . use of the OPEN macro
instruction. The SYSLIN and SYSPUNCH data
sets are also opened depending upon the
specification of the LOAD and DECK options.
The block sizes of these data sets are set
to 80, 120, 80 and 80, respectively. These
data sets may be blocked or unblocked
(RECFM=F, FB, or FBA) depending upon the

DCB specification in the DO statements.
IEYFORT concludes the compiler initializa
tion process with a branch to the first
processing phase of the compiler, Parse
(IEYPAR) •

From this point in the operation of the
compiler, each processing phase calls the
next phase to be executed. However, the
Invocation phase is re-entered periodically
when the compiler performs such input/
output operations as printing, punching, or
reading. The last entry to the Invocation
phase is at the completion of the compiler
operation.

IEYPRNT, Cha~~_00A4

IEYPRNT is the routine that is called by
the compiler when any request for printing
is issued. The routine sets and checks the
print controls such as setting the line
count, advancing the line count, checking
the lines used, and controlling the spacing
before and after the printing of each line.
These control items are set, checked, and
inserted into the SYSPRINT control format,

Section 2: Compiler Operation 33

and the parameter information and print
addresses are initialized for SYSPRINT.

If there is an error during the printing
operation, EREXITPR sets the error code
resulting from the print error. Any error
occurring during an input/output operation
results in a termination of compiler
operation.

PRNTHEAD is called by IEYPRNT after it
has been determined that the next print
operation begins on a new page. The pro
gram name and the new page number placed
into the heading format and any parameter
information and origin addresses are
inserted into the SYSPRINT format. If an
optional heading is specified by the pro
grammer, it is inserted into the print line
format. A PUT macro instruction is issued
to print the designated line, and all print
controls are advanced for the next print
operation.

IEYREAD, Chart 01A4

IEYREAD is called by the compiler at the
time that a read operation is indicated.
It reads input in card format from SYSIN
using the GET macro instruction. IEYREAD
can handle concatenated data sets.

If an error occurs during the read
operation, the routine EREXITIN is called.
This routine checks the error code
generated and prints the appropriate error
message.

When a punch output operation is
requested by the compiler, control is tran
sferred to the IEYPCH routine. The LOAD
and DECK options are checked to determine
what output to perform.

Any errors' detected during
in a transfer of control to
for SYSPUNCH, or EREXITLN,
routine. The routine sets a
no further output is placed on
file.

34

output result
the EREXITPC,
for SYSLIN,
flag so that
the affected

PRNTMSG, Chart 03A1

PRNTMSG is called when any type of
message is to be printed. The print area
is initialized with blanks and the origin
and displacement controls are set. The
message is printed in two segments; each
segment is inserted into the print area
after the complete message length is deter
mined and the length and origin of each
segment has been calculated. Once the
entire message has been inserted, the car
riage control for printing is set and
control is transferred to the system to
print the message.

IEYMOR, Chart 0101

IEYMOR is called when additional roll
storage area is needed for compiler opera
tion. This routine may be entered from any
of the processing phases of the compiler.
The GETMAIN macro instruction is issued by
this routine and transfers. control to the
system for the allocation of one 4K-byte
block of contiguous storage. The system
returns to IEYMOR with the absolute address
of the beginning of the storage block in
general register 1. Once the requested
storage space has been obtained, IEYMOR
returns to the invoking phase. If the
system is unable to allocate the requested
storage, inactive modules of the compiler
are deleted. Those preceding the currently
active module are deleted first; then those
following it are deleted, if necessary.
Should addi~ional space be needed after all
inactive modules are deleted, compiler
operations are terminated.

When IEYMOR returns to the invoking
phase with the absolute address of the
storage block in general register 1, the
invoking phase then stores the contents of
register 1 in the ROLL ADR table.

The ROLL ADR table is used by the
compiler to record the addresses of the
different blocks of storage that have been
allocated for additional roll capacity.
The contents of the table are later used in
IEYRETN for releasing of the same storage
blocks.

IEYNOCR

IEYNOCR is called by PRESS MEMORY
(IEYPAR) whenever it is unable to obtain at
least 32 bytes of unused storage. I EYNOCR
prints the message NO CORE AVAILABLE,
branches to a subroutine that checks to see
if there are any source language cards to
be disregarded, and then exits to IEYRETN.

The compiler termination routine
(IEYRETN) is invoked by Exit (IEYEXT) or by
one of the input/o~tput routines after the
detection of an error.

The routine first obtains the error
condition code returned by the compiler and
tests this value aqainst any previous value
received during the compilation. The com
piler communications area for the error
code is set to the highest code received
and a program name of "Main" is set in the
event of multiple compilations. The rou
tine then checks general register 1 for the
address of the ROLL ADR table. Each entry
of the ROLl. ADR tab~_e indicates thE- begin
ning of a 4K-byte block of roll storage
that must be relea~ed. A FREE~AIN macro
instruction is issued for each block of
storagE indicated in the table until a zero
entry is encountered (this denotes the end
of th~ HOLL ADR table).

The presence of more than one source
~onulp. in the input stream is checked by
interrogating the end-of-file indication
and the first card following this notation.
If another compilation is indicated, the
line, card, and page count control items
are reinitialized and all save registers
used by the Invocation phase are restored.
The number of diagnostic messages generated
for the compilation is added to a total
count for the multiple compilation and the
diagno~tic error C011nt is reset to zero.
The first processing phase of the compiler,
Parse (IEYPAR), is called and the operation
of the compiler proceeds as described in
the previous paragraphs and those pertain
ing to the processing phases.

If another compilation is not indicated,
a check is made to determine if there was a
multiple compilation. If there was a mul
tiple compilation, an indication of the
total number of diagnostic messages
generated for all of the compilations is
printed. Also, routine IEYFINAL closes the
data set files used by the compiler (by
means of the CLOSE macro instruction). The
terminal error condition code is obtained
and set for the return to the invoking
program, and all saved registers are
restored before the return is made.

Routine IEYFINAL also receives control
from other compiler routines when an input/
output error is detected.

OPTSCAN determines the existence of th~
parameters specifying the compiler options.
If options are specified, the validity of
eacn option is checked against the parame
ter table and the pointer to these options
h) set once the options have been vali
datej. The program name is noted jepending
upon the presence or absence of the NAME
parameter. However. if these options are
not specified, the first pointer of the
group of three supplied to the compiler by
the ~ystem contains zero.

DDNAMES scans the entries made for the
names of the data sets to be llsed by the
compiler. The entries corresponding to
SYSN, SYSIN, SYSPRINT, and SYSPUNCH are
checked; if an alternate name has been
provided, it is inserted into the DCB area.

HEADOPT determines the existence of the
optional heading i nf ormatiol". I t such
information exists, its length is deter
ruined, it is centere1 for printing, and
then is insert~d into the Printmsg Table,
with pointer 3 being, set.

TIMEDAT serves only to obtain the time
and date information from the system and to
insert the data into the heading line.

OUTPUT FROM IEYFORT

The following paragr~phs describe the
error messages produced during the opera
tion of the Invocation phase. These mes
sages denote the progress of the compila
tion, and denote the condition which
results in the termination of the compiler.

IEY028r NO CORE AVAILABLE
TERMINATED

COMPILATION

The system was unable to provide a
41<-byte block of additional roll
storage and PRESS MEMORY was
entered. It, too, was unable to
obtain space. The condition code
is 16.

Section 2: Compiler Operation 35

IEY0291 DECK OUTPUT DELETED

The DECK option has been specified,
and an error occurred during the
process of punching the designated
output. No error condition code is
qenerated for this error.

IEY030I LINK EDIT OUTPUT DELETED

The LOAD option has been specified,
and an error occurred during
process of generating the
module. The condition code is

the
load

16.

lEY031I ROLL SIZE EXCEEDED

This message is produced when: (1)
The WORK or EXIT roll has exceeded
the storage capacity assigned; or
(2) Another roll used by the com
piler has exceeded 64K bytes of
storage, thus making it unaddress
able. (This condition applies to
all rolls except the ~FTER POLISH
and CODE rolls.) The condition
code is 16 ..

IEY0321 NULL PROGRAM

This message is produced when an
end-of-data set is encountered on
the input data set prior to any
valid source statement. The condi
tion code is O.

IEY03QI I/O ERROR (COMPILATION TERMINATED]
xxx ••• xxx

This message is produced when an
input/output error is detected dur
ing compilation. If the error
occurred on SYSPUhCH, compilation
is continued and the COMPILATION
TERMINATED portion of the message
is not printed. The condition code
is 8. If the error occurred on
SYSIN, SYSPRINT, or SYSLIN, compi
lation is terminated. The condi
tion code is 16. xxx ••• xxx is the
character string formatted by the
SYNADAF macro instruction. For an
interpretation of this information,
see the publication IBM s~~env360
~rating System: Supervisor and
Data Management Macro-Instructions,
Form C28-66Q7.

IEY035I UNABLE TO OPEN ddname

36

This message is produced
required ddname data
card is missing or the
misspelled.

when the
definition
ddname is

Multiple Compilations

where:

The following rness'3gl? ?lppears "it
the end of a multiple comf-,ilat:i r)i1

to indica te the tota 1 number of
errors that occurred. The message
will not appear if the cotnpile r_' i3
te~mindte~ beca~se of an error con
dition or if the compilation con
sisted of only one main or one
Subprogram.

.STATISTICS* NO DIAGNOSTICS T~IS
STEP

or

.S?ATISTICS* nnn DIAGNOSTICS THIS
,..,.-~'tr" .,.,
.. J J.LL-

nnn is the total number of diagnostic
messages for the multiple compilation
expressed as a decimal integer.

PHASE 1 OF THE COMPILER: PARSE (IEYPAR)

The first processing phase of the
FORTRAN IV (G) compiler, Parse, accepts
FORTRAN statements in card form3t as input
and translates them. Specification state
ments are translated to entries on rolls
which define the symbols of the program.
Active statements are translated to Polish
notation. The Polish notation and roll
entries produced by Parse are its eE!~~E~
2utP~~. In addition, Parse writes out all
erroneous statements and the associated
error messages. Parse produces a full
source module listing when the SOURCE
option is specified.

The following description of Parse con
sists of two parts •. The first part, "Flow
of Phase 1," describes the overall logic of
the phase by means of both narrative and
flowchart.s.

The second part, "Output from Phase 1,"
describes the Polish notation produce1 by
Parse. The construction of this output,
from which subsequent phases produce object
code, is the pr.imary function performed by
Parse. See Appendix C for the Polish
format for each statement type.

The source listing
message;] prcd i .1ced by
discussed~

format and the
Parse are

error
also

The rolls rr~nipulated by Parse are
listed in Table 3 and are mentioned in the
following description of the phase. At the
first mention of a roll, its nature is
briefly described& See Appendix B for a
complete description of a format of a roll.

Form Y2P-6638-1
Page Revised 7/23/69 by TNL Y28-6829

Table 3. Rolls Used by Parse
r-------------------T---------------------,
IRoll !Roll
INO, Roll Name No. o Lib ----- -28

1 Source 29
2 Ind Var 30
4 Polish 31
5 Literal Const 32
6 Hex Const 33
7 Global 35

9
10
11
12

13
14
14
15
16
17
18
19
20

Fx Const
Fl Const
Dp Const
Complex Const
Dp Complex

Const
Temp Name
Temp
Error Temp
DO Loops Open
Error Message
Error Char
Init
Xtend Lbl
Xtend Target

Lbl
22 Array
24 Entry Names
25 Global Dmy
26 Error
27 Local Dmy

36
37
38

39
40
41
42

43
4~

45
46
53
54
55
56
59
60
63

Roll Name LOcal-sprog
Explicit
Call Lbl
Namelist Names
Namelist Items
Array Dimension
Temp Data Name
Temp Polish
Equivalence
Used Lib

Function
Common Data
Common Name
Implicit
Equivalence

Offset
Lbl
Scalar
Data Var
Li t.eral Temp
Format
Script
Loop Data
Program Script
AT
Subchk
After Polish

___________________ ~ __ --- ________________ J

Section 2: compiler Operation 36.1

FLOW OF PHASE 1, CHART 04

START COMPILEq initializes the operation
of Parse, setting flags from the user
options, reading and writing out (on
option) any initial comment cards in the
source module, and leaving the first card
of the first statement in an input area.
This routine concludes with the transfer of
control to STATEMENT PROCESS.

STATEMENT PROCESS (G0631) controls the
operation of Parse. The first routine
called by STATEMENT PROCESS is PRINT AND
rtEAD SOURCE. On return from that routine,
the previous source statement and its error
~essages have been written out (as defined
by user ortions), and the statement to be
processed (including any comment cards)
plus the first card of the next statement
will be on the SOURCE roll. (This roll
holds the source-5tatements, one character
per byte.) STATEMENT PROCESS then calls
STA INIT to initialize for the processing
of the statement and LBL FIELD XLATE to
process the label field of the statement.

On return from LBL FIELD XLATE, if an
error has been detected in the label field
or in column 6, STATEMENT PROCESS restarts.
Otherwise, STA XLATE and STA FINAL are
called to complete the translation of the
source statement. On return from STA
FINAL, if the last statement of the source
module has not been scanned, STATEMENT
PROCESS restarts.

When the last ca~d of a source module
has been scanned, STATEMENT PROCESS deter
mines whether it was an END card; if not,
it writes a message. The routine then sets
a flag to indicate that no further card
images should be read, and calls PRINT AND
READ SOURCE to write out the last statement
for the source listing (nepending on wheth
er the SOURCE option was specified or was
indicated as the default condition at sys
tem generation time).

When no END card appears, two tests are
made: (1) If the last statement was an
Arithmetic IF statement, the Polish nota
tion must be moved to the AFTER POLISH
roll; (2) If the last statement-Was-of-a
type which does not continue in sequence to
the next statement (e.g., GO TO, RETURN),
no code is required to terminate the object
module, and the Polish notation for an END
statement is constructed on the POLISH
roll. If the NEXT_ STA LBL FLAG is-off,
indicating that the last statement was not
of this type, the Polish notation for a
STOP or RETURN statement is constructed on
the POLISH roll, depending on whether the
source module is a main program or a
subprogram.

After the Polish notation for the STOP
or RETURN has been constructed on the
POLISH roll, the, Polish notation for the
END statement is then constructed~

Parse keeps track of all inner DO loops
that may possibly have an extended range.
Parse tags the LABEL roll entries for those
labels within the DO loops that are poss
ible re-entry points from an extended
range. These tags indicate the pOints dL

which general registers 4 through 7 must be
restored. The ,appropriate LOOP DATA roll
groups are also tagged to indicate to the
Gen phase which of the inner DO loops may
possibly have an extended range. Gen then
produces object code to save registers 4
through 7.

After processing the last statement of
the source module, a pointer to the ~QQ~
DATA roll is placed on the ~£~~PT_£Q!l, the
IND VAR roll is released, and, if the
source--module was a _main program, the
routine REGISTER IBCOM (G0707) is called to
record IBCOM as a required- subprogram. For
all source modules, the information
required for Allocate is then moved to the
appropriate area, and the Parse phase is
terminated.

PRINT and READ SOURCE, Chart BA

PRINT AND READ SOURCE (GOS37) serves
three functions:

1. It writes out the previous source
statement and its error messages as
indicated by user options.

2. It reads the new source statement to
be processed, including any comment
cards, as well as the first card of
the statement following the one to be
processed.

3. It performs an initial classification
of the statement to be processed.

The statement to be written out is found
on the SOURCE roll. One line at a time is
removed from this roll and placed in a
120-byte output area from which it is
written out. The new statement being read
into the SOURCE roll is placed in an
SO-byte input area and replaces the state
ment being written out as space on the
SOURCE roll becomes available. Any blank
card images in the source module are elimi
nated before they reach the SOURCE roll.
Comment cards are placed on the SOURCE roll
exactly as they appear in the source
module. The last card image placed on the
SOURCE roll is the first card of the source
statement following the one about to be

Section 2: compiler Operation 37

processed; therefore, any comment cards
that appear between two statements are
processed with the statement which precedes
them. When an END car~ has been read, no
further reading is performed.

The initial classification of the state
ment that occurs during the operation of
this routine determines, at most, two
characteristics about the statement to be
processed: (1) If it is a statement of the
assignment type, i.e., either an arithmetic
or logical assignment statement or a state
ment function, or (2) If it is a Logical IF
statement, whether the statement "S" (the
consequence of the Logical IF) is an
assignment statement. Two flags are set to
indicate the results of this classification
for later routines.

At the conclusion of this routine, all
of the previous source statements and their
errors have been removed from the SOURCE
roll and are written out. In addition, all
of the statements to be processed (up to
and including the first card of the state
ment following it) have been placed on the
SOURCE roll.

STA INIIL Chart BB

STA INIT (G0632) initializes for the
Parse processing of a source statement. It
sets the CRqNT CHAR CNT and the LAST CHAR
CNT to 1, and places the character from
column 1 of the source card in the variable
CRRNT CHAR.

It then determines, from a count made
during input of the statement, the number
of card images in the statement: multiply
ing this value by 80, STA INIT sets up a
variable (LAST SOURCE CHAR) to indicate the
character number of the last character in
the statement.

The routine finally releases the TEMP
NAME roll and sets several flags -and
variables to constant initial values before
returning to STATEMENT PROCESS.

LBL FIELD XLATE (G063S) first saves the
address of the current WORK and EXIT roll
bottoms. It then inspects the first six
columns of the first card of a statement.
It determines whether a label appears, and
records the label if it does. If any
errors are detected in the label field ~r
in column 6 of the source card, LBL FIELD
XLATE records these err:>rs for later print-

38

ing and returns to STATEMENT PROCESS
(through SYNTAX FAIL) with the ANSWER BOX
set to false.

Pointers to all labels within DO loops
are placed on the ~TEN~LB~_roll~ Labels
that are jump targets (other than jumps
within the DO loop) are tagged to indicate
to Gen at which points to restore general
registers 4 through 7.

If the statement being processed is the
statement following an Arithmetic IF state
ment, LBL FIELD XLATE moves the Polish
notation for the Arithmetic IF statement to
the AFTER POLISH roll after adding a point
er to the label of the present statement to
it.

ST~~~ATE, Chart BD

Under the control of STA XLArE (G063b)
the source module statemertt on the SOURCE
roll is processed and the Polish notation
for that statement is produced on the
POLISH roll, which holds Polish notation
for source statements, one statement at a
time. Errors occurring in the statement
are recorded for writing on the source
module listing.

The addresses of the bottoms of the WORK
and EXIT rolls are saved. Then, if the
statement is of the assignment type (the
first flag,set by PRINT AND READ SOUR~E is
on), STA XLATE ensures that a BLOCK DATA
subprogram is not being compiled and falls
through to ASSIGNMENT STA XLATE (G0637).
If a BLOCK DATA subprogram is being com
piled, STA XLATE returns after recording an
invalid statement error message. If the
statement is not of the assignment type, a
branch is made to LITERAL TEST (G0640),
which determines the nature of the state
ment from its first wordCs), and branches
to the appropriate routine for processing
the statement. The names of the statement
processing routines indicate their func
tions; for example, DO statements are
translated by DO STA XLATE, while Computed
GO TO statements are translated by CGOTO
STA XLATE.

Wi th the exception of LOGICAL IF S'I'A
XLATE, the' statement processing routines
terminate their operation through STA XLA1E
'EXIT. LOGICAL IF STA XLATE moves the
second flag set by PRINT AND READ SOURCE:
(which indicates whether the statement "S"
is an assignment statement) into the first
flag, and calls STA XLATE as a subroutine

for the translation of the statement "S."
When all of the Logical IF statement,
including "S," has been translated, LOGICAL
IF STA XLATE also terminates through STA
XLATE EXIT.

STA XLATE EXIT (G0723) determines
whether errors in the statement are of a

severity level which warrants discarding
the statement. If such errors exist, and
the statement is active (as opposed to a
specification statement), the Polish nota
tion produced for the statement is removed
and replaced by an invalid statement driver
before a return is made to STATEMENT
PROCESS. Otherwise, the Polish notation is
left intact, and a return is made to
STATEMENT PROCESS •

. Section 2: Compiler Operation 38.1

ment number by one for the statement just
processed. It then determines whether any
Polish notation has been produced on the
POLISH roll; if no Polish notation is
present, STA FINAL returns to STATEMENT
PROCESS.

If the statement produced Polish nota
tion of a type which may not close a DO
loop, STA FINAL bypasses the check for the
close of a DO loop. Otherwise, ~~~ r~~~L

determines whether the label (if there is
one) of the statement corresponds to the
label of the terminal statement of a DO
loop. If so, the label pointer (or poin
ters, if the statement terminates several
DO loops) is removed from the DO LOOPS OPEN
roll f which holds pointers to--oO--loop
terminal statements until the terminal
statements are found.

When the statement is the target of a DO
loop, extended range checking is continued.
DO loops which have no transfers out of the
loop are eliminated as extended range can
didates. In addition, the nest level count
is reduced by one and the information
concerning the array references in the
closed loop is moved from the SCRIPT roll
to the PROGRAM SCRIPT roll.

STA FINAL then places the label pointer
(if it is required) on the Polish notation
for the statement, and, at STA FINAL END,
adds the statement number to the Polish.

Except wnen the statement just processed
was an Arithmetic IF statement, STA FINAL
END terminates its operation by moving the
Polish notation for the statement to the
AFTER POLISH roll. In the case of the
Arithmetic IF, the Polish notation is not
moved until the label of the next statement
has been processed by LBL FIELD XLATE.
When the Polish notation has been moved,
STA FINAL returns to STATEMENT PROCESS.

ACTIVE END STA XLATE (G0642) is invoked
by STATEMENT PROCESS when the END card has
been omitted and the last statement in the
source module has been read. If the last
statement was not a branch, the routine
determines whether a sUbprogram or a main
program is being.terminated. If it is a
subprogram, the Polish notation for a
RETURN is constructed; if it is a main
program, the Polish notation for a STOP
statement is constructed. If the last
statement was a branch, this routine
returns without doing anything.

PROCESS POLISH (G0844) moves a count of
the number of words in the Polish notation
for a statement, and the Polish notation
for that statement, to the AFTER POLISH
roll.

OUTPUT FROM paASE 1

The output from Parse is the Polish
notation and roll entries producea for
source module active statements, the roll
entries produced for source module specifi
cation statements, and the source module
listing (on option SOURCE) and error mes
sages. The following paragraphs descrioe
the Polish notation and the source and
error listings. See Appendix 8 for
descriptions of roll formats.

Polish Notation

The primary output from Phase 1 of the
compiler is the Polish notation for the
source module active statements. This
representation of the statements is pro
duced one statement at a time on the POLISH
roll. At the end of the processing of each
statement, the Polish notation is tran~
ferred to the AFTER POLISH roll, where it
is held until it is required by lat~r
phases of the compjler.

Hle format of the Polish notation dlt

fers from one type of statement to another.
The following paragraphs describe the gen
eral rules for the construction of Poli~h
notation for expressions. The specific
formats of the Polish notation produced for
the various FORTRAN statements are given in
Appendix C.

Polish notation is a method of writing
arithmetic expressions whereby the tradi
tional sequence of "operand 1 " "operation"
"operand 2 " is altered to a functional nota
tion of "operation" "operand2 " "operand1 ."

Use of this notation has the advantage of
eliminating the need for brackets of
various levels to indicate the order of
operations, since any "operand" may itself
be a sequence of the form "operation"
"operand" "operand," to any level of
nesting.

Assuming expressions which do not
include any terms enclosed in parentheses,
the following procedure is used to con
struct the Polish notation for an
expression:

Section 2: Compiler Operation 39

1. At the beginning of the expression, an
artificial driver is placed on the
WORK roll: this driver is the Plus and
Below Phony driver, and has a lower
forcing strength than any arith
metic or logical operator. (Forcing
strengths are given in Table 1.)

2. As each variable name or constant in
the expression is encountered, a
pointer to the defining group is
placed on the POLISH roll.

3. When an operator is encountered, the
corresponding driver is constructed
and it is compared with the last
driver on the WORK roll:

a. If the current driver has a higher
forcing strength than the driver
on the bottom of the WORK roll
(the "previous" driver, for the
purposes of this discussion), the
current driver is added to the
WORK roll and the analysis of the
expression continues.

b. If the current driver has a forc
ing strength which is lower than
or equal to the forcing strength
of the previous driver, then:

(1) If the ~revious driver is the
Plus and Below Phony driver,
the current driver replaces
the previous driver on the
WORK roll (this situation can
only occur when the current
driver is an EOE driver, indi
cating the end of the expres
sion) and the analysis of the
expression is terminated.

(2) If the previous driver is not
the Plus and Below Phony driv
er, the previous driver is
removed from the WORK roll and
placed on the POLISH roll, and
the comparison of the current
driver against the previous
driver is repeated (that is,
using the same current driver,
this procedure is repeated
from 3).

The sequence of operations which occurs
when the analysis of an expression is
terminated removes the EOE driver from the
WORK roll.

EX~Ele-1: The expression A + B produces
the Polish notation

40

A
B
+

where:

A represents a pointer to the defining
group for the variable A

+ represents the Add driver. This nota
tion is produced from the top down: when it
is read from the bottom up, the sequence
described above for Polish notation is
satisfied.

Explanation: The following
occur rn--the production of
notation:

operations
this Polish

1. The Plus and Below Phony
placed on the WORK roll.

driver is

2. A pointer to A is placed on the POLISH
roll.

3. An Add driver is constructed and com
pared with the Plus and Below Phony
driver on the bottom.of the WORK roll:
the Add driver has a higher forcing
strength and is therefore added to the
WORK roll (according. to rule 3a"
above) •

4. A pointer to B is placed on the POLISH
roll.

5.

6.

7.

An EOE (end of expression) driver is
constructed and compared with the Add
driver on the bottom of the WORK roll:
the EOE driver has a lower forcing
strength, and the Add driver is there
fore removed from the WORK roll and
added to the POLISH roll (rule 3b2).

The EOE driver is compared with the
Plus and Below Phony driver on the
bottom of the WORK roll: the EOE
driver has a lower forcing strength,
and therefore (according to rule 3b1)
replaces the Plus and Below Phony
driver on the WORK roll.

The analysis of the expression is
terminated and the EOE driver is
removed from the WORK roll. The
Polish notation for the expression is
on the POLISH roll.

ExamQle 2: The expression A + B / C
produces the Polish notation

A
B
C
/
+

which, read from the bottom up, is + / C B
A.

E;xplanation:
occur in the
notation:

The following operations
production of this Polish

1. The Plus and Below Phony driver is
placed on the WOR¥ roll.

2. A pointer to A is placed on the POLISH
roll.

3. An Ad~ driver is constructed and com
pared with the Plus and Below Phony
driver; the Add driver has the higher
forcing strength and is placed on the
WORK roll.

4. A pointer to B is placed on the POLISH
roll.

5. A Divide driver is constructed and
compared with the Add driver; the
Divide driver has the higher forcing
strength and is placed on the WORK
roll.

6. A pointer to C is placed on the POLISH
rol i.

7. An EOE driver is constructed and com
pared with the Divide driver; since
the EOE driver has the lower forcing
strength, the Divide driver is moved
to the POLISH roll.

8. The EOE driver is compared with the
Add r}river; since the EOE driver has
the lower forcing strength, the Add
driver is moved to the POLISH roll.

9. The EOE driver is compared with the
Plus and Below Phony driver; since the
FOE driver has the lower forcing
strength, it replaces the Plus and
Below Phony driver on the WORK roll.
and the analysis of the expression
terminates with the removal of one
group from the WORK roll.

ExamEle 3: The expression A / B - C
produces the Polish notation

A
B
/
C

which, read from the bottom up, is - C / B
A.

Expl~tion:
occur in the
notation:

The following operations
production of this Polish

1. The Plus and Below Phony driver is
placed on the WORK roll.

2. A pOinter to A is placed on the POLISH
roll.

3. A Divide driver is constructed and
compared with the Plus and Belvw Phony
driver; the Divide driver has -cue
higher forcing strength and is added
to the WORK roll.

4. A pointer to B is placed on the POLISH
roll.

5. A ~UDtract driver is constructed and
compared with the Divide driver; the
Subtract driver has a lower forcing
strength, therefore the Divide driver
is moved to the POLISH roll.

6. The Subtract driver is compared with
the Plus and Below Phony driver; the
Subtract driver has the higher forcing
strength and is added to the WORK
roll.

7. A pOinter to C is placed on the POL!SH
roll.

8. An EOE driver is constructed and com
pared with the Subtract driver; since
the EOE driver has a lower forcing
strength, the Subtract driver is moved
to the POLISH roll.

9. The EOE driver is compared with the
Plus and Below Phony driver; the EOE
driver replaces the Plus and Below
Phony driver on the WORK roll and the
analysis of the expression is ter-
minated.

Recursion is used in the translation of
an expression when a left parenthesis is
found; therefore, the term enclosed in the
parentheses is handled as a separate
expression. The following three examples
illustrate the resulting Polish notation
when more complicated expressions are
transformed:

EXP~§§!2!!
1. A-B*(C+O)
2. (A-B) / (C*O)
3. X/Z/(X-C)+C**X

Polish Notation
-*+OCBA
/*DC-BA
+**XC/-CX/ZX

The following should be noted with re
spect to the exponentiation operation:

• Exponentiations on the same level are
scanned right to left. Thus, the
expression A**B**C**D is equivalent to
the expression A**(B**(C**O).

• Two groups are added to the POLISH roll
to indicate each exponentiation opera
tion. The first of these is the Power
driver; the second is a pointer to the
group on the global subprogram roll
(GLOBAL SPROG roll) which defines the

Section 2: Compiler Operation 41

required exponentiation routine. Thus,
the expression A •• B produces the
following Polish notation:

Pointer to A
Pointer to B
Power driver
Pointer to exponentiation routine

The concept of Polish nct~tion is
{:xtended in thp FORTRAN IV (G) compiler to
include not only the representation of
drithmetic expression~, but also the repre
sentation of all parts of the active state
ments of the FORTRAN language. The parti
cular notation produced for each type of
statement is described in Appendix c. Once
an entire source statement has been pro
duced on the POLISH roll, phase 1 copies
this roll to the AFTER ?(If,TSH roll and the
processing of the next statement begins
with the POLISH roll empty.

Source Listing

Thp secondary outpUl from Parse is the
source module lis~ing. if a sOlttce listing
lS requested by the user (by means of the
option SOURCE), source module cards are
listed exactly as they appear on the input
data set with error messages added on
separate lines of the listing. If no
source module listing is requested, Parse
writes only erroneous statements and their
error messages.

The following paragraphs describe the
error recording methods used in phase 1,
the format of the source listing and the
error messages generated.

ERROR RECORDING: As a rule, Parse attempts
to continue processing source statements in
which errors are found. However, certain
errors are catastrophic and cause Parse to
terminate processing at the point in the
statement where the error occurred.

Statements which cannot oe compiled
properly are replaced by a call to the
FORTRAN error routine IHCIBERH.

Throughout Parse, three techniques of
error recording are used. The first of
these is used when the error is not cat~a
strophic. This method records the char
acter position in the statement at which
the error was detected (by means of IEYLCE,
IEYLCT, or IEYLCF instructions) and the
number of the error type on the ERROR roll;
after recording this information, Parse
continues to scan the statement.

The second and thir1 techniques of error
recording are used when the error detected

42

is catastrophic, at least to part of the
statement being scanned. The second tech
nique is a jump to an error recording
routine, such as ALLOCATION FAIL or SUB
SCRIPTS FAIL, which records the error and
jumps to FAIL. The third technique is the
use of one of the instructions, such as
IEYCSF or IEYQSF, which automatically jump
to SYNTAX FAIL if the required condition is
not met. SYNTAX FAIL also exits through
FAIL.

If the statement being processed is
active and errors have been detected in it,
FAIL removes any Polish notation which has
been produced for the statement from the
POLISH roll, replacing it with an error
indicator. FAIL then restores WORK and
EXIT roll controls to their condition at
the last time they were saved and returns
accordingly.

Some translation routines modify the
action of the FAIL routine through the use
of the IEYJPE instruction so that FAIL
returns immediately to the location follow
ing the IEYJPE instruction. The transla
tion routine can then resume the processing
of the statement from that point.

FORMAT OF THE SOURCE MODULE LISTING: Error
information for a source module card con
taining errors appears on the listing lines
immediately following that card. For each
error encountered, a $ sign is printed
beneath the active character preceding the
one which was being inspected when the
error was detected. The only exception
would be in the case of a SYNTAX error. In
such a case, the $ sign undermarks the
character being inspected when the error is
detected. The listing line which follows
the printed card contains only the $ sign
markers.

The next line of the listing describes
the marked errors. The errors are numbered
within the card (counting from one for the
first error marked); the number is followed
by a right parenthesis, the error number,
and the type of the error. Three errors
are described on each line, for as many
lines as are required to list all the
marked errors on the source card.

The following is an illustration of the
printed output from phase 1:

DIMENSION ARY(200), BRy(200) CRYeS,10,10)
$

1) IEY0041 COMMA

IF eAA + BB) 1~, 20, 250000
$

1) IEY010I SIZE
ARyeJ) = BRY

$ $
1) IEY002I LABEL 2) IEY0121 SUBSCRIPT

GTO 30
$

1) IEY0131 SYNTAX

ERROR TYPES: The types of errors detected
and reported by Pa~se are described in the
following paragraphs. For each error type,
the entire message which appears on the
source output is given; the condition code
and a d~scription of the causes of this
error follows the message.

lEY0011 ILLEGAL TYPE: This message is
associated with the source module statement
when the type of a variable is not correct
for its usage. Examples of situations in
which this message would b€ given are: (1)
'Ihe variable in an Assigned GO TO statement
is not an integer vaciacle: (2) In an
assignment statement, the variable on the
left of the equal sign is of logical type
and the expression on the right side is
not. The condition code is 8.

IEY002I LABEL: This message appears with a
stdtement which should be labeled and is
not. Examples of such statements are: (1)
A FOr.~~T statement: (2) The statement fol
lowing a GO TO statement. The condition
code for the error is 0:

IEY003I __ ~AM~ __ LE~~T~: The name of a vari
able, CO~MON block, NAMELIS'I, or subprogram
exceeds six characters in length. If two'
variable names appear in an expression
without a separating operation symbol, this
message is produced. The condition code is
4.

IEY004I COMMA: A comma is supposed to
appear in a statement and it does not. The
condition code is o.

IEY0051 ILLEGAL LABEL: The usage of a
label is invalid for example, if an attempt
is made to branch to the label of a FORMAT
statement, IT·LEGAL LABEL is produced. The
condition code is 8.

I[Y006I DUPLICATE LABEL: A label appeari~g
in the label field of a statement 1S
already defined (has appeared in the label
field of a previous 8~atement). The condi
tion code is 8.

!~!QQZ!_!Q_£Q~f~!£I: The name of a vari
able or subprogram is used improperly, in
the sense that a previous statement or a
previous portion of the present statemE:'nt
has established a type for the nante, and
the present usage is in conflict with that
type. Examples of such situations are:
(1) The name listed in a CALL statement is
the name of a variable, not a SUbprogram:
(2) A single name appears more than once in
the dummy list of a statement function; (3.
A name listed in an EXTERNAL statement has
already been defined in another context.
The condition code is 8.

lEY008I ALLOCATION: Storage assignments
;pecllIed--Ey--a--source module statement
cannot be performed due to an inconsistency
between the present usage' of a variable
name and some prior usage of that name, or
due to an improper usage of a name when it
first occurs in the sourcE:' module.
Examples of the situations causing the
error are: (1) A name listed in a COMMON
block has been listed in another COM~ON
block: 2) A variable listed in an EQUIVA
LENCE statement is followed by more than
seven subscripts. The condition code is 8.

lEYOO~I ORDER: The statements of a source
module are used in an improper sequence.
This message is produced, for example.
when: (1) An IMPLICIT statement appears as
anything other than the first or second
statem€nt of the source module; (2) An
ENTRY statement appears within a DO loop.
The condition code is 8.

IEYOI0I SIZE: A number used in the source
module does not conform to the legal values
for its use. Examples are: (1) 'The size
specification in an Explicit specification
statement is not one of the acceptable
values; (2) A label which is used in a
statem~nt exceeds the legal sIze for a
statement label; (3) An integer constant 1S
too large. The condition code is 8.

IEY011I UNDIMENSIONED: A variable name
Indrcates-an-arraY-(I~e., subscripts follow
the name), and the variable has not been
dimensioned. The condition code is 8.

IEY012I SUBSCRIPT: The number of subscripts--used--in- an array reference is
either too large or too small for the
array. The condition code is 8.

IEYOl3I SYNTAX: The statement or part of a
statement to which it refers does not
conform to FORTRAN IV syntax. If a state
ment cannot be identified, this error mes
sage is used. Other cases in which it
appears are: (1) A non-digit appears in
the label field; (2) Fewer than three
ldbels follow the expression in an Arith
metic IF statement. The condition code is
e.

Section 2: Co~piler Operation 43

IEY014I CONVERT: In a DATA statement or in
an Explicit specification statement con
taining data values, the mode of the con
stant is different from the mode of the
variable with which it is associated. The
compiler converts the ~onstant to the
correct mode. Therefore, this message is
simply a notification to the programmer
that the conversion is performed. The
condition code is o.

IEY015I NO END CARQ:
does not contain an END
condition code is o.

The source module
statement. The

IEY016I ILLEGAL STA.: The statement to
which it is a~tached is invalid in the
context in which it t-}as been used.
Examples of situations in which this mes
sage appears are: (1) The statement S in a
Logical IF statement (the result of the
true condition) is a specification state
ment, a DO statement, etc.; 2) An ENTRY
st.atement appears in the scurce module and
the source mod 1Jle is not a subprogram. The
condition code is 8.

IEY017I ILLEGAL STA. WRN A RETURN I
statement appears in any ~ource module
other than a SUBROUTINE subprogram. The
condition code is o.

IEYOl8I NUMBER ARG: A reference to a
library subprogram appears with the in
correct number of arguments specified.
The condition code is 4.

IEY027I CONTINUATION CARDS DELETED: More
than 19 continuation lines were read for 1
statement. All subsequent lines are
skipped until the beginning of the next
statement is encountered. The condition
code i:3 8.

IEY033I COMMENTS DELETED: More than 30
comment lines were read between the initial
lines of 2 consecutive statements. The
31st comment line and all subsequent com
ment lines are skipped until the beginning
of the next statement is encountered.
(Ther~ is no restriction cn the number of
comment lines preceding the first atate
ment.) The condition code is o.

IEY036I ILLEGAL LABEL WRN: The label on
thIS-nonexecutable-Statement has no valid
use beyond visual identification, and may
rroduce errors in the object module if the
same label is the target of a branch-type
statement. (Only branches to executable
statements are valid.) This message is
produced, for example, when an END state
ment is labeled. The message is issued as
a warning only. The condition code is 4.

IEY037I PREVIOUSLY DIMENSIONED WRNn: The
array--fIagged--has-~een-prevIously dimen-
sioned. The dimensions that were given
first are used. Examples of this error are
(1) a DIMENSION statement defining an array
with a subsequent COMMON statement defining
the S.lme <Hr~y with new dimensions, or (2)>

array dimersions specified in a Type state
ment and also in a subsequent DIMENSION
and/or COMMON statement. The condition
code is 4.

IEY038I SIZE WRN.: . A variable has data
initializing values that exceed the size of
the scalar, the array, or the array ele
ment. Examples of this error are (1) the
specification HEAL A/'ABCDE'/ where A has
not been previously dimensioned (i.e., A is
a scalar), or (2) the specification
DATA A(1)/7H ABCDEFG/ where A has been
previously dimensicned. The condition code
is 4.

PHASE 2 OF THE COMPILER: ALLOCATE (IEYALL)

Phase 2 of the compiler performs the
assignment of storage for the variables
defined in the source module. The. results
of the allocation operations are entered on
tables which are left in storage for the
next phase. In addition, Allocate writes
(on option) the object module ESD cards,
the TXT cards for NAMELIST tables, literal
constants, and FORMAT statements, and pro
duces error messages and storage maps
(optionally) on the SYSPRINT data set.

The following paragraphs describe the
operations of Allocate in two parts. The
first part, "Flow of Phase 2,R describes
the overall logic of the phase by ffieans of
narrative and flowcharts.

The second part, ROutput from Phase 2,"
describes the error messages and memory'
maps which are produced on the source
module listing during the operation of the
phase, as well as the ESD and TXT cards
produced. It also describes the types of
error detection performed during Allocate.

Rolls manipulated by Allocate are listed
in Table 4, and are briefly described in
context. Detailed descriptions of roll
structures are given in Appendix B.

'Iable 4. Holls Used by Allocate

,-------------------T--------------------,
IRoll IRol1 I
INo. Roll Name I~ Roll Name I
I 1 Source 39 Halfword I
J 5 Literal Const Scalar I
I 7 Global Sprog 40 C~mmon Name I.
I 14 Temp 41 Implicit I

15 Do Loops Open 42 Fquivalence I
18 Init Offset
19 Equiv Temp 43 Lbl
20 EqlJiv Hold 44 Scalar
21 Base Table 45 Data Var
22 Array 47 Common Data
23 Dmy Dimension 'Iemp
24 Entry Names 1 48 Namelist
25 Global Dmy I Allocation
26 Error Lb! , 48 Common Area I

27 Local Dmy I 49 Common Name
28 Local Sprog I Temp
29 Explicit I 50 Equiv
30 Error Symbol I Allocation
31 Namelist Names I 52 Common
32 Namelist Items I Allocation
34 Branch Table I 53 Format
:3'1 Equivalence I 60 Subchk
37 Byte Scalar I f.l8 General
38 Used Lib I Allocation

Function I
I 39 Common Data I l ____________________ ~ ____________________

Section 2: Compiler Operation 44.1

FLOW OF PHASE 2, CHART 05

START ALLOCATION (G0359) controls the
operation of the Allocate chase. The ori
mary function of this routine is to call
the subordinate routines which actually
perform the operations of the phase.

The operation of Allccate is divided
into three parts: the first part performs
initialization; the second part (called
pass 1. makes an estimate of the number of
base table entries required to accommodate
the data in the object module; the third
part actually assigns storage locations for
the object module components, leaving indi
cations of the assign~ent in main storage
for use by SUbsequent phases.

The first part of Allocate's operation
is performed by calling the routines ALPHA
LBl AND L SPROG, PREP ECUIV AND PRINT
ERRORS, BLOCK DATA PROG ALLOCATION, PREP

. DMY DIM AND PRINT ERRORS, FRCCESS DO LOOPS,
PROCESS LBL AND LOCAL SPROGS, BUILD PROGRAM
ESD, ENTRY NAME ALLOCA~ION, COMMON
ALLOCATION AND OUTPUT, and ECUIV ALLOCATION
FRINT ERRORS.

After return from EQUI'J ALLOCATION PRINT
ERRORS, START ALLOCATION initializes for
and begins pass 1. 't'ht~ variable PROGRAM
fREAK, which is used to maIntain the rela
tive address being assigned to an object
roodule component, is restored after being
destroyed during the allocation of COMMCN
and EQUIVALENCE. The groups in the BASE
~ABL~--f0ll .(which "becomes the object module
base table) are counted, and the value ten
is added to this count to provide an
estimate of the size of the object module
case table. The BASE TABLE roll is then
reserved so that groups added to the roll
can he separated from those used in the
count. The value one is assigned to the
variable AREA CODE, indicating that storage
~o be assigned is all relative to the
teginning of the obje=t module and carries
its ESD number.

When these operations are complete,
START ALLOCATION calls EASE AND BRANCH
~ABLE ALLOC, and upon return from this
routine again increases the variable
PROGRAM BREAK by the amount of storage
allocated to EQUIVALENCE. S~ART ALLOCATION
continues its operation by calling BUILD
ADDITIONAL EASES, PREP NAMELIST. SCALAR
ALLOCATE, ARRAY ALLOCATE, PASS 1 GLOBAL
SPROG ALLOCATE, SPROG ARG ALLOCATION,
LITERAL CONST ALLOCATION and FORMA~
ALLOCATICN.

After the operation of FORMAT
ALLOCATICN, the last palt of Allocate is
begun. The variable PROGRAM BREAK is re
initialized to the value it was assiqned

prior to pass 1. The BASI:. ~ABU; roll
groups are counted to determine the total
S1ze of the roll after qroups have been
added by pass 1; again, five ext.ra groups
(or ten words) are added to the count to
provide for data values which will appear
in the object module, but which are not yet
defined_ The PASS 1 FLAG is theo turned
oif, and START ALLOCATION calls DEfUG
ALLOCATE, ALPHA SCALAR ARRAY AND SPROG,
BASE AND BRANCH TABLE AILOC, GLOBAL SPROG
ALLOC}~TE,

SCALAR ALLOCATE, ARRAY ALLOCATE, bUILD
NAMELIST TABLE, LITERAL CONST ALLOCATION,
and FORMAT ALLOCATION.

At RELEASE ROILS, START ALLOCA~ION con
cludes its operation by releasing rolls,
increasing the PROGRAM BREAK to ensure that
the next base begins on a doubleword boun
dary, and calling CALCULATE BASE AND DISP
and BUILD ADDITIONAL BASES in order to
guarantee that at least three bases are
allotted for the TEMP AND CONST roll.
After this calculatIon;-Allocate-prepares
for and relinquishes control to Unify.

ALPHA LBL AND L SPROGS, Chart CA

This routine (G0543) is the first rou
tine called by START AILOCA~ION. It moves
the binary labels from the LBL roll and the
statement function names from the LOCAL
SPROG roll to the DATA VAR roll. Th~ order
of the labels and statement function na~es
on their respective rolls is maintained,
and the location on the DATA VAR roll at
which each begins is recorded. The· names
are moved because Allocate destroys them in
storing allocation information, and Exit
needs them for writing the object module
listing.

This routine moves the names of scalars,
arrays, and called subprograms to the DATA
VAR roll from the rolls on which they are
placed by Parse. The order of names is
preserved and the beginning location for
each type of name on the DATA VAR roll'is
saved.

Subscript information on the EQUIVALENCE
OFFSET roll (which indicates the subscripts
used in EQUIVALENCE statements in the
source module) is used by this routine

Section 2: Compiler Operation 45

(G0362) to calculate the relative ad
dresses of array elements referred to in
statements. (Pointers to the EQUIVALENCE
CFFSET roll are found on the £2Q!Y~~~~~~
roll for all subscripted references in
EQUIVALENCE statements.) the addresses
computed are relative to the beginning of
the array. When an array reference in a
source module EQUIVALENCE statement is out
side the array, designates an excessive
number of dimensions, or specifies too few
dimensions, an error message is printed by
this routine.

BLOCK DATA PROG ALLOCATION, Chart CC

This routine (G0361) controls the allo
cation of data specified in DATA, COMMON,
DIMENSION, EQUIVALENCE, and type statements
in a BLOCK DATA subprogram. Since all data
specified in EQUIVALENCE must be allocated
under COMMON, this routine registers an
error upon encountering on the EQUIVALENCE
roll. the routine terminates with a jump
to RELEASE RCLLS (G0360), which, in turn,
terminates the Allocate phase.

PREP DMY DIM AND PRINT ERP.CRS, Chart CD

This routine (G036S) constructs the ~
DIMENSION roll, placing a ~ointer to the
ENTRY ~AMES--rol! group defining the ENTRY
with which a dummy array is connected, and
a pointer to the array for each dummy array
cor.taining a dummy dimension.

Before the roll is constructed, this
routine ensures that each array having
dummy dimensions is itself a dummy, and
that each dummy dimension listed for the
array is either in COMMON or is a global
dummy variable in the same call. If any of
these conditions are not satisfied, error
messages are written.

PROCESS 00 LOOPS, Chart CE

This routine (G0311) inspects the DO
LOOPS OPEN roll for the purpos~ of deter
m1n1ng whether DO loops opened by the
source module have been left unclosed; that
is, whether the terminal statement of a DO
loop has been omitted from the source
~odule. The 00 LOOPS CPEN roll holds
pointers to labels of target statements for
DO loops until the loops are closed. If
any information is present on this roll,
loops have been left unclosed.

46

On encountering information on the DO
LOOPS OPEN roll, this routine records the
undefined labels for listing as DO loop
errors, and (on option) lists them. It
also sets the high order bit of the tAG
field of the tBL roll group which refers to
the undefined-rabel-to zero; this indicates
to Gen that the loop is not closed.

This routine (G0312) conatructs th~
PRANCH TABLE r2!!, which ia to become the
object module branch table. The routine
first pro~esses the LBL roll. For' each
branch target label found on thAt roll, a
new BRANCH TABLE roll group is constructed,
and the label on the LSL roll is replaced
with a pointer to the group constructed.
Undefined labels are also detected and
printed during this process.

When this operation is complete, the
LOCAL SPROG roll (which lists the names of
alr-statem~nt-functions) is inspected, and
for each statement function, a group is
added to the BRANCH TABLE roll, and part of
the statement function name is placed with
a poi~ter to the constructed group.

This routine (G0314) constructs and
punches t.he ESO cards for the object ~lIodule
itself (the program name) and for each
ENTRY to the object module. It also
assigns main storage locations to the
object module heading by increasing the
PROGRAM BREAK by the amount of storage
required.

Thi5 routine (G031b) does nothing if the
source module is other than a FUNCTION
subprogram. If, however, the source module'
is a FUNCTION, this routine places the
names of all ENTRYs to the source module on
the EQUIVALENCE roll as a Single
EQUIVALENCE set; it also ensures that the
ENTRY name has been used as a scalar 1n the
routine. If the variable has not been
used, an appropriate error message is
printed and the scalar variable is defined
by this routine.

COMMON ALLOCAT:ON AND OUTPUT, Chart CI

This routir~ (G0377) allocates all COM
MON storage, one block at a time, generat
ing the COMMOfJ ALLOCATION roll (which holds
the name, base--pointer;--and- displacement
for all COM~ON variables) in the process.
Groups are add0d to the BASE TABLE roll as
they are requj-ed to provide for references
to variables ~n COMMON. The ESO cards for
COMMON are constructed and written out.
All errors in ('OMMON allocation are written
on the source listing and the map of COMMON
storage is al~o written (on option).

EQUIV ALLOCAT!')N PRINT ERRORS, Chart CK

This routine (G0381) allocates storage
for EQUIVALENCE variables, creating the
EQUIVALENCE ALLOCATION roll in the process.
For each variable appearing in an EQUIVA
LENCE set, except for EQUIVALENCE variables
which refer to COMMON (which have been
removed from the EQUIVALENCE roll during
the allocation of COMMON storage), the name
of the variable and its address are
recorded.

The information pertaining to EQUIVA
LENCE sets is stored on the EQUIV ALLOCA
TION roll in order of ascending addresses.
Required bases are added to the BASE TABLE
roll, and all remaining EQUIVALENCE errors
arE' printed.

BASE AND BRANCH TABLE ALLOC. Chart CL

This routioe (G0437) assigns main
storage for the object module save area,
base table, and branch table. The required
base table entries are added as needed,
PROGRAM BREAK is increased, and the base
pointer and displacement for each of these
arE'as is recorded in a save area for use by
Gen. During pass 1 of Allocate, this
assignment of storage is tentative and
depends on the estimate of the size of the
ba~e table. The second time this routine
is opera Led, the actual number of base
tal)le entries required in the object module
has been determined by pass 1 and the space
allocation is final.

SCALAR ALLOCATE, Chart CM

Each grou[on the SCALAR roll is
inspected by this routine (G0397), which
defines all nonsubscripted variables. It

allocates storage for the variables listed
on the roll, except for those which are in
COMMON or members of EQUIVALENCE sets. The
first time SCALAR ALLOCATE operates, it
determines the number of base table entries
required to accommodate references to the
object module scalar variables. The infor
mation on the SCALAR roll is not altered,
nor is any other roll built or modified by
the routine.

At the second operation of the routine,
the SCALAR roll is modified, and the actual
storage locations (represented by the base
pointer and displacement) to be occupied by
the scalar variable are either computed and
stored on the SCALAR roll or copied from
the COMMON or EQUIV ALLOCATION roll to the
SCALAR roll.

All "call by name" dummy variables are
placed on the FULL WORD SCALAR roll; as
each. remaining scalar is inspected, its
mode is determined. If it is of size 8 or
16 (double-precision real or single- or
double-precision complex), storage is allo
cated immediately. If t~e variable does
not require doubleword alignment, it is
moved to one of three rolls depending on
its size: FULL WORD SCALAR, HALF WORD
SCALAR, or BYTE SCALAR.

When all groups on the SCALAR roll have
been processed in this manner, the
variables on the FULL WORD SCALAR roll,
then the HALF WORD SCALAR roll, then the
BYTE SCALAR roll are assigned storage. The
map of scalars is produced (on option) by
this routine.

ARRAY ALLOCATE, Chart CN

This routine (G0401), like SCALAR ALLOC
ATE, is called twice by START ALLOCATE.
The first time it is called, it determines
the number of base table entries required
for references to the object module arrays.
The second time the routine is operated, it
actually assigns storage for the arrays,
and records the appropriate base pointer
and displacement on the ARRAY roll.

As each array name is found on the ARRAY
roll, it is compared with those on the
COMMON, EQUIV, and GLOBAL DMY rolls. For
COMMON and EQUIVALENCEd arrays, the alloca
tion information is copied from the appro
priate roll. Since all du~my arrays are
·call by name" dummies, dummy array groups
are always replaced with pointers to the
GLOBAL DMY roll. For each array to be
assigned storage, new base table entries
are constructed as required. In no case is
more than one base used for a single array.

Section 2: Compiler Operation 47

Since arrays are allocated in the order
of their appearance, some unused storage
space may appear between consecutive arrays
due to the required alignment. The array
map is produced (on option) by this
routine.

This routine (G0402) counts the groups
on the GLOBAL SPROG and USED LIB FUNCTION
rolls (which hold, respectively, the non
library and library subprogram names
referred to in the source module) to deter
mine the number of base table entries
required for references to the subprogram
addresses region of the object module. The
required BASE TABLE roll groups are added.

SPROG ARG ALLOCATION, Chart CP

This routine (G0442) adds the number of
arguments to subprograms (and thus, the
number of words in the argument list area
of the object module) to the PROGRAM BREAK,
thus allocating storage for this portion of
the object module. BASE TABLE roll groups
are added as required.

PRF.P NAMELIST, Chart CQ

This routine (G0443) determines the
amount of main storage space required for
each object module NAME LIST table. The
NAMELIST ALLOCATION roll is produced during
this routine's operation; it contains, for
each NAMELIST data item, the name of the
item and a pointer to the SCALAR or ARRAY
roll group defining it. If any data name
mentioned in a NAMELIST is not the name of
a scalar or array, the appropriate error
message is printed by this routine.

The NAMELIST NAMES roll is left holding
the NAfvjELIST name and the absolute location
of the beginning of the corresponding
object module NAMELIST table. Required
BASE TABLE roll groups are added by this
routine.

This routine (G0444) is called twice by
START ALLOCATION. Its first operation de
termines the number of BASE TABLE roll.
groups which should be added to cover the

48

literal constants in the object module.
The second operation of the routin p

actually assigns storage for all llLeral
constants (except those appearing in s(jurc~
module DATA and PAUSE statements) and
writes (on option) the TXT cards for them.

This routine (G044S) is called twice by
START ALLOCATION. The first time it is
called is during the operation of pass 1.
In pass 1, the PROGRAM BREAK is increased
by the number of bytes occupied by each
FORMAT.

The second time that FORMAT ALLOCATION
is called, each FORMAT is written out and
the FORMAT roll is rebuilt. The base and
displacement information and a pointer to
the label of the FORMAT statewent are the
contents of the rebuilt ~ORMAT group. The
map of the FORMAT statements used in the
ob;ect module is also written out (on
option) by this routine.

EQUIV MAPL Chart CT

This routine (G0441) adjusts the values
on the EQUIVALENCE ALLOCATION roll to the
corrected (for the correct allocation of
the base table, since this routine operates
after the completion of pass 1) base point
er and displacement, and constructs the
BASE TABLE roll groups required. The map
of EQUIVALENCE variables is produced (on
option) by this routine.

GLOBAL SPROG ALLOCATE, Chart CU

This routine (G0403) goes through the
GLOBAL SPROG and USED LIB FUNCTION rolls,
inserting the base pointer and displacement
for each of the subprograms listed there;
this is the allocation of storage for the
subprogram addresses region of the object
module. The ESDcards for the subprograms
are written, the required BASE TABLE roll
groups are added, and a list of the subpro
grams called is produced (on option).

BUILD NAMELIST TABL~£har~ CV

This routine (G040S) operates after pass
1 of Allocate. It uses the NAMELIST NAMES
roll in determining the base and displace-

~ent for each NAMELIST reference in the
source module. The BASE TAELE roll groups
are added as required. !he PROGRAM BREA~
is increased as indicated, and the TXT
cards ar~ written out ~cccr~ing to the base
and displacement calculations for each
entry on the NAMELIST ALLOCATION roll. A
map of the NAMELIST tableb is produced (on
option) ty this routine.

This routine (G0438) is called whenever
it ~ay be necessary to construct a new BASE
~ABLE rell group. It determines whether a
new base is required and, if s~, constructs
it.

DEBUG ALLOCAT~~!:L.'£~

This routine (GOS4~) processes the
intorrration on the INIT and SUBCHK rolls,
rrarking the groups on the SCALAR, ARRAY,
and GLOBAL DMY rolls which define the
variables listed. When all the information
on the SUBCHK roll has been precessed, the
routine returns.

OUTPUT FROM PHASE 2

The following paragra~hs describe the
output from Allocate: error messages,
maps, and cards. Allocate also produces
roll entries describing the assignment of
rnain storage. See Appendix B for descrip
tions of the roll formats.

The source module listing, with error
indications and error messages for the
errors detected during initial processing
of the source statements, is produced by
phase 1 of the compiler. Certain program
errors can occur, however, which cannot be
detected until storage allocation takes
place. These errors are detected and
reported (if a listing has been requested),
at the end of the listing by ALLOCATE; the
error messages are described in the follow
ing paragraphs.

FUNCTION ERROR: When the program being
compiled is a FUNCTION subprogram, a check
is made to determine whether a scalar with
the same name as the FUNCTION and each

ENTRY is defined. If no such scalars are
listed on the SCALAR roll, the wessage

FU t~C'fI Ot~

is written on the
The message is
undefined names.

UNDEFINED

source module listing.
followed by a list of the
The condition cede is 4.

~Q~Q~ __ ~~~Q~~: Errors of two types can
exist in the definitions of EVUIVALENCE
sets which refer to the COMMON area. The
first type of error exists because of a
contradiction in the allocation specified,
e.g., the EQUIVALENCE sets (A,B(6),C(2)
and (B(8),C(1). The second error type is
due to an attempt to extend thp beginning
of the COMMON arEa, as in COMMON A,B,C and
EQCIVALENCE (A,F(lO».

An ad~itional error in the assignment of
COMMON storage occurs if the source program
attempts to allocate a variable to a loca
tion which does not fallon the appropriate
boundary. Since each COMMON block is
assumed to begin on a double-precision
boundary, this error can be produced in
either (or both) the COMMON statement ana
an EQUIVALENCE statpment which refers to
COMMO~.

When each block of COMMON storage has
been allocated, the message

IEY020I CGMMON BLOCK / / ERRORS

is printed if any error has been detected
(the block name is provided). The message
is followed by a list of the variables
which could not be allocated due to the
errors. The condition code is 4.

Unclosed DO LOOps

If DO loops are initiated in the SOULce
module, but their terminal statements do
not exist, Allocate finds pointers to the
labels of the nonexistent terminal state
ments on the DO LOOPS OPEN roll. If
pointers are found on the roll, the message

IEY021I UNCLOSED DC LOOPS

is printed, followed by a list of the
labels which appeared 1n DO statements and
were not defined in the source module. The
conditidn code is 8.

Section 2: compiler Operation 49

UNDEFINED LAEELS: If any latels are used
in the source module but are not defined,
they constitute label errors. Allocate
checks for this situation. At the conclu
sion of this check, the messaqe

IEY0221 UNDEFINED LABELS

is printed. If there are undefined labels
used in the source module, they are listed
on the lines following the m€ssage. The
condition code is 8.

EQUlyALENC~ __ ~§: Allocation errors due
to the arrangement of EQUIVALENCE state
ments which do not refer to COM~CN
variables may have two causes. The first
of these is the conflict between two EQUIV
ALENCE sets: for example, (A,B(6),C(3» and
(BP3),C(l)).

The second is due to incompatibl~ boun
darl alignment. in the EQUIVALENCE set. The
first variable in each EQUIVALENCE set is
assigned to its appropriate toundary, and a
record is kept of the size of the variable.
Then, as each variable in the set is
~rocessed, if any variable of a greater
size requires alignment, the .entire set is
moved accordingly. If any variable is
encountered of the size which caused the
last alignment, or of lower size, and that
variable is not on the a~~ropriate boun
dary, this error has occurred.

If EQUIVALENCE errors of either of these
types occur, the message

IEY0231 EQUIVALENCE ALLOCA~ION ERRORS

is printed. The message is followed by a
list of the variables which could not be
allocated according to source module speci
fications. The condition code is 4.

Another class of EQUIVALENCE error is
the specification, in an E~UIVALENCE set,
of an array element ~hich is outside the
array. These errors are summarized under
the heading

IEY024I EQUIVALENCE DEFINITION ERRORS

on the source module listing.
tion code is 4.

The condi-

DUMMY DIMENSION ERRORS: If variables spe
cified as dummy array di~e~sions are not in
CO~MON and are not global dummy variables,
they constitute errOTS. These are summa
rized under the heading

IEY025I DUMMY DIMENSION EFRCRS

on the source module listing.
tion code is 4.

50

The condi-

BLOCK DATA ERRORS: If variables specifi~d
within the BLOCK DATA subprograrr have not
also been defined as COMMON, they con5ti
tute errors. The message

IEY0261 BLOCK DATA PROGRAM ERRORS

is producej on the
followed by a
variables in error.
4.

source module listing
summarization of the

The condition cod~ is

Allocate produces the storage map5 de
scribed below during its operations; these
maps are printed only if the MAP option is
specified by the prograwmer.

COMMON MAP: The map of each COMMON blocK
is produced by Allocate. The map is headed
by two title lines: the first of these is

COMMON / name / MAP SIZE n

and the second is the pair of words

SYMBOL LOCATION

printed five times across the line. The
title lines are followed by a list of the
variables assigned to the COMMCN block and
their relative addresses, five variables
per line, in order of ascending relative
addresses. The name contained within the
slashes is the name of the COMMON block.
The amount of core occupied by the block
(nt is given in hexadecimal and represents
the number of bytes occupied.

Allocate prints a list of the subpro
grams called by the source module being
compiled. This list is printed only if the
MAP option is specified by the programmer.
The subprogram list is headed by th~ line

SUBPROGRAMS CALLED

and contains the names of the subroutines
and functions referred to in the source
module.

SCALAR MAP: The scalar map is produced by
Allocate-and consists of two title lines,
the first o~ which reads

SCALAR MAP

and the second of which is identical to the
second title line of the COMMON maps. The

title is followed by a list of the non
COMMON scalar variables, five variables per
line, and their relative addresses, in
crder of ascending relative addresses.

ARRAY MAP: The first titl~ line of the
array map reads

ARRAY. MAP

In all other respects, the array map is
identical to the scalar ma~.

£~VALENC; __ MAP: The first title line of
the map of ECUIVALENCE sets reads

EQUIVALENCE tATA MAP

The second line for both maps is standard.
The variables listed in the EQUIVALENCE map
are those not defined as COMMON.

NAMElIST M~~: This map shows the locations
of the NAMELIST tables. The first title
line reads

NAMELIST MAP

and the second line is standard. The
symbol listed is the ~AMFLIST name asso
ciated with each of the tables.

FOR~T MAP: This map gives the labels and
locations of FORMAT staterrents. The first
title line is

FORMAT STATEMENT r"AP

and the second tltle is the same as the
others described. The symcol listed is the
label of the FORMAT, statement.

Cards Produced by Allocate

Allocate produces both ESO and TXT'
cards, provided that a DECK option or a
LOAD option has been specified by the
programmer. All ESD cards required by the
object modul~ are produced during this
phase. These include cards for the CSECT
in which the object module is contained for
each CO~MON block and for each subprogram
referred to by the object module.

The ESD cards that are produced by
Allocate are given in the follOWing order
according to type:

ESD, type 0 - contains the name of the
program and indic~te8 the begin
ning of the object module.

ESD, type 1 - contains the entry point to a
SUBROUTINE or FUNCTION subpro
gram, or the name tipecified in
the NAME option', or the name
MAIN. The name designated on the
card indicates where control is
given to begin execution of the
mod ule.

ESD. type 2 - contains the names of subpro
grams referred to in the source
module oy CALL statements,
EXTERNAL statements, ~x~licit

function references, ~nd implicit
function referen~es.

ESD, type 5 - contains infor~ation about
each COMMON block.

The 7XT cards produced during this phase
fill the following areas of the object
module:

• The NAMELIST tables

• The literal constants

• The FORMAT statements

The other TXT cards required for the
object module are produced by later phases
of the compiler.

The third phase of the compiler opti
mizes the subscripting operations perfor~ed
by the object module by deciding, on the
basis of frequency of use, which subscript
expressions within DO loops are to appear
in general registers, and which are to be
maintained in storage.

'l'he following paragraphs, "Flow of Phase
3,· describe the operation of Unify by
means of narrative and flowcharts.

The rolls manipulated by Unify are
listed in Table 5 and are mentioned in the
following discussion of the phase; these
rolls are briefly described in context.
See Appendix B for a complete description
of any roll used in the phase.

section 2: compiler Operation 51

Table 5. Rolls Used by Unify
r--------------------T--------------------,
I Roll Number Roll Name I
I 2 Nonstd Script J
I) Nest Script J
I 4 loop Script I
I 1) Std Script I
I 14 ~emp I
I 20 Reg I
I 21 Ease Table I
I 22 Array I
I 52 Loop Control ,
) 5ij Script,
I 55 loop Data I
) 56 Program Script I
I 57 Array Ref I
J 58 Adr Const J ~ _______________________________________ J

FLOW OF PHASE 3, CHART 07

START UNIFY (G0111) controls the opera
tion of t.his phase of the compiler. It.
initializes for the phase by setting the
~roper number of groups on the ARRAY REF
roll to zero (this function is performed by
the routine ARRAY REF ROIL ALLOTMENT) and
moving the information transmitted on the
PROGRAM SCRIPT roll to the SCRIPT roll.
When the initialization is complete, the
reserve blocks on the SCRIPT roll are in
order from the outermost lco~ of the last
source module DO nest (at the top of the
roll) to the innermost loop of the first
source module DO nest (at the bottom of the
roll).

After initialization, S~ART U~IFY begins
the optimizing process ty inspecting the
last group of a reserve block on the SCRIP~
roll; a value of zero in this group indi
cates the end of the SCRIP~ roll informa
tion. When the value is nonzero, DO NEST
UNIFY is called to process the information
for an entire nest of CO lco~s. On return
from this routine, the nest bas been pro
cessed; the count of tem~orary storage
locations required is updated, and START
UNIFY repeats its operations for the next
nest of loops.

When all loops have been processed,
START UNIFY makes a complete pass on the
ARRAY REF roll, .setting up the instruction
format fer the array references from point
ers which have been left on the roll
(CONVERT TO INST FORMAT actually sets up
the instruction fields). When all groups
on the ARRAY REF roll have been processed,
a jump is made to CONVERT ~O ADR CONST.
This routine sets up groups as required on
the ADR CONST roll from data on the LOOP
CUNTROL--roII-.---When the LOOP CONTROL roll
has been processed, this routine-termInates
the Unify phase by calling Gen.

. 52

This routine (G014S) constructs the
ARRAY REF roll. The groups on this roll
are initialized with values of zero.
Pointers to the roll have been placed on
the SCRIPT roll and in the Polish notation
by Parse, b~t information has not actually
been put on the roll before this routine is
called. The number of groups req~ired has
been transmitted from Parse.

This routine (G01l) constructs the ADR
CONST roll from the base address infJrma
tion on the LOOP CONTHOL roll.

When the third word of the LOOP CONTROL
roll group contains an area code and dis
placement, ~nify requires a base address
which it does not find in the base table.
Since no values can be added to th~ base
table by Unify, the required value must be
placed in the temporary storage and con
stant area of the object module. The ADR
CONST roll holds the information required
for Exit to place the value in a tempor~ry
storage and constant location and to pro
duce the RLD card required to ge~ the
proper modification of the value in that
location at load time. This routine builds
that information on the ADR CONST roll. by
allocating the temporary storage and con
stant locations for the area codes and
displacement values it finds on thp Leop
CONTROL roll. See Appendix B for further
explanation of the rolls involved.

This routine (G0112) sets up the first
word (zero rung) of each ARRAY REF roll
group by testing the contents of the later
words (the register rungs) of the same,
roll. The result is the skeleton of the
instruction ~o be used for an array
reference. When the second and third words
of the group point to a general register,
they are shifted into the appropriate posi
tion and inserted into the zero rung. (See
Appendix B for the configuration of the
ARRAY REF roll group.) At each entry to
this routine, one word is processed and
that word is cleared to zero before the
routine exits.

DO NEST UNIFY, Chart DD

This routine (G0115) first initializes
for the processing of one nest of DO loops.
For each DO loop, a reserve block exists On
the SCRIPT roll and one group exists on the
LOOP DATA roll. These blocks and groups
are ordered so that, reading from the
bottom of the rolls up, a nest level of one
indicates the end of a nest of loops; that
is, for each nest, the bottom block repre
sents the inner loop and the top block
represents the outer loop.

DO NEST UNIFY serves a control function
in this phase, arranging information to be
processed by DO LOOP UNIFY and LEVEL ONE
UNIFY; it is these latter routines which
actually perform the optimization of sub
scripting by means of register assignment.
The main result of the optimization is that
in the initialization code for each loop,
only that portion of each subscript which
depends on the DO loop variable is
computed.

DO LOOP UNIFY expects to find a reserved
block on the bottom of the NEST SCRIPT roll
describing a loop one nest level deeper
than the loop described by the bottom
reserved block on the SCRIPT roll. More
over, both the block on the SCRIPT roll and
the block on the NEST SCRIPT roll must
already reflect the allocation of arrays by
Allocate; that is, both blocks must have
heen processed by NOTE ARRAY ALLOCATION
DATA, another routine called by DO NEST
UNIFY. This arrangement is required so
that DO LOOP UNIFY can pass information
from the loop beinq processed (on the NEST
SCRIPT roll) to the next outer loop (on the
~)CRIPT roll).

A special case is made of the reserved
block describing a loop of nest level one,
since there is no outer loop to which
information can be passed. The routine'
LEVEL ONE UNIFY processes in place of DO
LOOP UNIFY in this case; it expects to find
the reserved block describing the level one
loop on the NEST SCRIPT roll.

IEYROL MODULE

The IEYROL module is loaded into main
storage by program fetch, along with the
Invocation phase and the five processing
phases. It contains two static rolls (the
WORK roll and the EXIT roll), roll statis
tics, group stats, and the ROLL ADR table.
Throughout the operation of the compiler,
it maintains a record of the storage space
allocated by the control program to the
dynamic rolls.

Gen produces object code from the Polish
notation and roll,information left by pre
vious phases of the compiler. The code
produced by this phase appears, one state
ment at a time, on the CODE roll, and is
saved there until it is written out by
EXIT.

The following paragraphs, "Flow of Phase
4," describe the operation of this phase by
means of narrative and flowcharts.

The rolls man1pulated by Gen are listed
in Table 6 and are mentioned in the follow
ing description of the phase: these rolls
are briefly described in context. See
Appendix B for a complete description of
all of the rolls used in the phase.

Table 6. Rolls Used by Gen
r--------------------T--------------------,
I Roll I R911 I
INa. Roll Name 1~2~ Roll Name I

1 Source--- I 24 Entry~es I
4 Polish I 25 Global Dmy I
8 Fx Canst I 34 'Branch Table I
9 FI Canst I 36 Fx Ac I

10 Dp Canst I 40 Terrp Pntr I
11 Complex Const I 42 FI Ac I
12 Dp Complex I 43 Lbl I

Canst I 44 Scalar I
14 Temp I 45 Data Var I
15 Do Loops Open I 52 Loop Control I
15 Loops Open I 55 Loop Data I
16 Temp and Canst I 56 Array Plex I
17 Adcon I 57 Array Ref I
18 Data Save I 59 At I
22 Array I 62 Code I
23 Dmy Dimension I 63 After polish I
L..J Sprog Arg i i ____________________ ~ ____________________ J

FLOW OF PHASE 4, CHART 08

START GEN (G0491) initializes for the
operation of the Gen phase. It then calls
ENTRY CODE GEN to produce the object head
ing code and PROLOGUE GEN and EPILOGUE GEN
for the required prologues and epilogues.
On return from EPILOGUE GEN, START 'GEN
falls through to GEN PROCESS.

GEN PROCESS (G0492) controls the repeti
tive operations of Gen. It first calls GET
POLISH, which moves the Polish notation for
one statement from the AFTER POLISH roll to
the POLISH roll. Using the Polish notation
just moved, GEN PROCESS determines whether
the statement to be processed was labeled;
if it was, the routine LBL PROCESS is
called. If the source statement was not

Section 2: Compiler Operation 53

labeled, or when LBL PROCESS returns, GEN
PROCESS calls STA GEN and ST~ GFN F1NISH.
On return from STA GEN FINISH, GEN PROCESS
restarts.

The termination of the Gen phase of the
compiler occurs when an END statement has
been processed. END STA GEN jumps directly
to TERMINATE PHASE after the object code is
produced, rather than returning to GEN
PROCESS. TERMINATE PHASE is described in
Chart EG and in the accompanying text.

ENTRY CODE GEN (G0499) first determines
whether the source module is a subprogram.
If it is not, the heading code for a main
program is placed on the CODE roll, the
location counter is adjusted, and the rou
tine returns.

If the source module is a subprogram,
ENTRY CODE GEN determines the number of
entries to the subprogram, generates code
for the main entry and for each secondary
entry and, when all required entry code has
been produced, it then returns.

PROLOGUE GEN (GOS04) processes the main
entry and each additional ENTRY to the
source subprogram, producing the required
prologues. Prologue code transfers argu
ments as required and is, therefore, not
produced if no arguments are listed for the
ENTRY. The prologue code terminates with a
branch to the code for the appropriate
entry point to the subprogram; in prepara
tion for the insertion of the address of
that entry point, this routine records the
location of the branch instruction on the
ENTRY NAMES roll. If the source module is
not a subprogram, PROLOGUE GEN exits.

EPILOGUE GEN (GOSOS) processes the main
entry and each additional ENTRY to a sub
program, producing the required epilogues.
Epilo9ue code returns argument values and
returns to the calling program. If this
routine determines that the source module
is not a subprogram, main program prologue
and epilogue code are produced.

This routine (G0712) moves the Polish
notation for a single statement from the

. S4

AFTER POLISH roll to the POLISH roll. The
Polish notation is moved from the beginning
of the AFTER POLISH roll, and a pointer is
maintained to indicate the pobition on Lhe
roll at which the next statement be3ins.

~: Unlike the other rolls, data from
the AFTER POLISH roll is obtained on a
first-in first-out basis (i.e., the BASE
rather than the BOTTOM pointer is used).
This is done to maintain the sequence of
the source program.

LBL PROCESS (G0493) stores the label
pointer left on the WORK roll by GEN
PROCESS in STA LBL BOX. It then inspects
the LBL roll group defining the label, and
determines whether the label is a jump
target. If so~ the base register table is
cleared to indicate that base values must
be reloaded.

If the label is not the target of a
jump, or when the base register table has
been cleared, the AT roll is inspected.
For each AT roll entry (and, therefore, AT
statement) referring to the labelej state
ment being processed, made labels are con
structed for the debug code and for the
next instruction in line, pOinters to these
labels are recorded on the AT roll, and an
unconditional branch to the debug code is
placed on the CODE roll.

When all AT references to the present
label have. been processed, an instruction
is placed on the CODE roll to inform Exit
that a label was present and that a branch
table entry may be required. Then, if the
trace flag is on (indicating the presence
of the TRACE option in the source DEBUG
statement), the debug linkage for TRACE and
the binary label are placed on the CODE
roll. If the trace flag is off, or when
the code has been completed, LBL PROCESS
returns.

STA GEN (GOS1S) uses the control driver
left on the WORK roll by GEN PROCESS to
index into a jump table (STA RUN TABLE>,
jumping to the appropriate routine for
constructing the object code for the spe
cific type of statement being processed.
This operation is called a "run" on the
driver; other "runs" occur in Gen for
building specific instructions or for
generating data references.

The names of the code generating rou
tines indicate the functions they perform;

for example, assignment statements are pro
cessed by ASSIGNMENT STA GEN, while GO !O
statements are processed by GO TO STA GEN.
1hese routines construct the code for the
statement on the CODE roll and, when the
code is com~lete, return to GEN PROCESS.

END STA GEN processes the END statement
and provides the normal termination of the
Gen phase by jumping to TERMINATE PHASF
~fter producing the code. !he code pro
d~ced for the END statement is identical to
that for the STOP staterrent if a main
rrogram is being compiled or a RETURN
statement if a subprogram is being com
~iled. If an AT statement precedes the
END, an unconditional hranch instruction is
canst ructed to ret'lrn t ron the debug code
to the main line of code.

TERMINATE PHASE (GOS4U) prepares for and
calls the Exit phase of the compiler.

STA GEN FINISH, Chart EH

STA GEN FINISH (G0496) determines wheth
er the present statement is the clOSing
statement of any DO loops; if it is, this
routine generates the cooe required for the
CO loop closing and repeats the check for
additional loops to be closed.

When all DO closings have been pro
cessed, STA GEN FINISH resets pointers to
temporary locations, clears accumulators,
and returns to GEN PROCESS.

PHASE 5 OF THE COMPILER: EXIT (IEYEXT)

Exit produces the SYSPUNCH and/or SYSLIN
output requested by the programmer, except
for the ESO cards and TXT card produced by
the Allocate phase. It also produces the
listing of the object module on SYSPRINT,
if it has been requested by the programmer.

The description of this phase of the
compiler is divided into two parts. The
first of these, ·Flow of ~hase 5,· de
scribes the overall logic cf the phase by
means of narrative and flowcharts.

The second part of the description of
the phase, ·Output from Phase 5,· describes
the output written by the phase.

The rolls used by Exit are listed in
Table 1, and are briefly described in
context. For further dp.8cription of rolls,
see Appendix B.

Table 1. Rolls Used by Exit
r------------------T----------------------,
I Roll Numver I Roll Narn~ I
I 1 I Global Sprng I
I 16 I Temp and const I

17 ADCoN !
20 CSECT I
23 Sprog Arg
38 Used Lib FUllction
45 BCD
46 Base ~able
Sl RLD
S2 Branch Tatle
58 Adr Const
62 Code __________________ ~ ______________________ J

FLOW OF PHASE 5, CHART 09

The routine EXIT PASS (G0381) controls
the operation of this phase. After initia
lizing, this routine calls PUNCH NAME LIST
MPY DATA and PUNCH TEMP AND CONS';' ROLL.
The routine PUNCH ADR CONST ROLL is then
called and, if an object roodule listing ~ .. as
requested, the heading for that t~sting is
written out.

After this operation, EXIT PASS calls
PUNCH CODE ROLL, records the rnerrory
requirements for the code, and prints the
compiler statistics. PUNCH BASE HOIL,
PUNCH BRANCH ROLL, PUNCH SPROG AT~G kOIL.
PUNCH GLOBAL SPROG ROLL, PUNCH USED LIBHAHY
ROLL, PUNCH ADCON ROLL, ORDER AND PUNCH RLD
ROLl .. , and PUNCH END CAPJ) are th~n called in
order. On return from the last of these l

EXIT PASS releases rolls and exits to the
Invocation phase of the compiler.

This routine (G0382) initializes the
location counter for the temporary storage
and constant area of the Object module e It
then initializes a pointer to the TEMP AND
CONST roll and begins the processing of
that roll from top to bottom. Each group
on the roll is moved to the output area;
when the output area is full, a TX'I' card is
written. When the entire TEMP AND CONST
roll has been processed, a jump is made to
PUNCH PARTIAL TXT CARD, which writes out
any partial TXT card remain1ng in the
output area and returns to EXIT PASS.

Section 2: Compiler Operation 55

The information on the ACR CONST roll is
used by this routine (G0383) to produce TXT
cards for tem~orary storage and constant
area locations which contain addresses.
RLD roll entries are also ~roduced to cause
correct modification of thcse locations by
the linkage editor. The beginning address
of the temporary storage and constant area
is computed. Then, for each ADR CONST roll
entry, the TEMP AND CONS~ roll pointer is
added to that value to produce the address
at which an address constant will be
stored. This address is ~laced in the ~X~
card and on the RLD roll, the address
constant from the ADR CONS~ roll initial
izes that location, and the area code from
the ADR CONST roll is rlaced on the RLD
roll. (See Appendix B for roll descrip
tions.)

~H CODE ROLL, Chart FC

PUNCH CODE ROLL (G0384) initializes a
location counter and a pointer to the CODE
roll. Inspecting one group at a time, it
determines the nature of the word. If it
is a statement number, PUNCH CODE ROLL
simply stores it and repeats the operation
with the next word.

If a group is a constant, it is placed
in the output area for SYSPUNCH and/or
SYSLIN. This category includes literals
which appear in-line and, thus, the con
stant to be written, may occupy several
groups on the roll.

Groups representing code are placed in
the output area and, if an object module
listing has been requested, the line
entered into the output area is listed
before it is punched. The cont~nts of the
rATA VAR roll are used fcr the listing of
the operands.

If the group on the CODE roll is an
indication of the definition of an address
constant, the location counter is stored
accordingly, and the operation of the rou
tine continues with the next group.

PUNCH CODE ROLL also determines whether
the group is an indication of the defini
tion of a label, if it is, the routine
defines the label on the BRANCH TABLE roll
as required, inserts the label in the
output line for the object module listing
and repeats with the next group on the
roll.

When all groups on the roll have been
processed, a transfer to PUNCH PARTIAL TXT

56

CARD is made; that routine writ~s out any
incomplete 'I'XT card which may be in the
output area, and returns to EXI1 P~S~.

PUNCH BASE ROLL, Chart FD

PUNCH BASE ROLL (G0399) initializes a
pointer to the BASE TABLE roll and ini~ial
izes the location counter to the beginning
address of the object module base table.
It then enters each group on th~ 8ASE TABL~
roll into the TXT card output' atea; it also
records the object module ESD number and
the location counter on the RLD roll for
later production of the rtLD cards.
Whenever the output area is full, a TXT
card is written. When all groups on the
BASE TABLE roll have been processed, the
routine makes 3 jurrp to PUNCH PARTIAL TXT
CARD, which writes out any incomplete card
in the output area and returns to EXIT
PASS.

This routine (G0400) first initializEs a
pointer to thp. BRANCH TABLE roll, and the
location counter to the beginning location
of the otject module branch table. When
these operations are COmpleted, the routine
inspects the BRANCH TABLE roll from top to
bottom, making the requisite entries on the
RLD roll and entering the addresses tram
the roll in the TXT card output area. ~X~
cards are written when the output area is
full. When ali BRANCH TABLE roll g~oups
have been processed, the routine jumps to
PUNCH PARTIAL TXT CARD, which writes out
any incomplete card in the output area and
returns to EXIT PASS.

fY~tl_§fROG ARG ROLL, Chart FF

PUNCH SPROG ARG ROLL (G0402) initializes
a pointer to the SPROG ARG roll and 1n1-
tializes the location counter to the begin-'
nin9 address of the subprogram arguments
area of the object module.

The routine then inspects the groups on
the SPROG ARG roll. If the first word of
the group contains the value zero (indicat
ing an argument whose address will be
stored dynamically), the group is placed in
the TXT card output area, and the card is
written if the area is full. The routine
then repeats with the next group on the
roll.

If the SPROG ARG roll group does not
contain zero, the group is then inspected
to determine whether it refers to a tem
porary location. If it does, the correct
location (address of the tem~orary storage
and constant area plus the relative address
within that area for this location) is
determined. The required RlD roll entries
are then made, the address is moved to the
output area, and PUNCH SFROG ARG ROLL
r~peats this process with the next group on
the roll.

If the group from the SPROG ARG roll
contained neither a zero nor a temporary
location, the argument referenced must have
been a scalar, an array, a label or a
subprogram. In any of these cases, a base
table pointer and a displacement are on th~
fainted roll. From these, this routine
computes the location of the variable or
label or th~ subprogram address, enters it
in the TXT card output area, and records
the RLD information required on the RLD
roll. The routine then repeats with the
next group on the SPROG ARG roll.

This routine exits to EXIT PASS through
PUNCH PARTIAL TXT CARD ~hen all SPROG ARG
roll groups have been processed~

This routine (G0403) first inverts the
GLOBAL SPROG roll and moves one word from
that roll to the WORK roll. If these
actions indicate that there is no informa
tion on the roll, the routine exits.

Otherwise, for each gxou~ on the GLOBAL
SPROG roll, this routine enters the ESD
number for the subprogram and the location
at which its address is to be stored on the,
RlD roll. The routine also writes a word
conta1n1ng the value zero for each subpro
gram listed (these words become the object
module subprogram a1dresses region). When
all groups on the GLOBAL SPROG roll have
been processed, the routine exits through
PUNCH PARTIAL TXT CARD, which writes out
any incomplete card remaining in the output
area before returning to EXIT PASS.

PUNCH USED LIBRARY ROLL, Chart FH

This routine (G0404) performs the same
function for the Y21~_~IB FUNCTIO! __ £2l1
that the previous routine performs for the
GLOBAL SPROG roll, thus completing the
subprogram addresses region of the object
module. The techniques used for the two
rolls are identical.

This routine (G0405) returns immediately
to EXIT PASS if there is no information on
the ADCON roll. Otherwise, it writes out
one TXT-card-for each group it finds on the
roll. obtaining the area code, the address
constant, and the address of the constant
from the ADCON roll. The ESD number and
th~ address of the constant ar~ placed on
the RLD roll for subsequent processing. A
Tj(T card is punched containing the con
stant. The op·eration of PUNCH ADCON HOLL
terminates when all groups on the roll have
been processed.

QBQ~R_~~D PUNCH RLD ROLL. Chart FJ

This routine (G0416) sorts the RLD roll
and p~ocesses the groups on that roll,
producing the object module RLD cards. The
card images are set uPi and the RLD cards
are actually written ou~ as they are com
pleted. When all information on the roll
has been processed, this routine returns ~o
EXIT PASS.

PUNCH END CARD (G0424) produces the
object module END card. It moves the
required information into the cdrd image
and initiates the write operation; it then
returns to EXIT PASS.

PUNCH NAMELIST MPY DATA, Chart Fb

This routine (G0564) is responsible for
the punching of TXT and RLD cards for those
words in the object module NAMELIST tables
which contain pointers to array dimension
multipliers. The multipliers themselves
are placed on the TEMP AND CONST roll. The
required information is found on the
NAMELIST MPY DATA roll; when all groups
have been processed, this routine returns
to EXIT PASS.

OUTPUT FROM PHASE 5

Four types of output are produced by the
Exit phase of the compiler: TXT cards, RLD
car4s, the ~bject module listing, and the
compiler statistics. The cards are pro
duced on SYSPUNCH and/or SYSLIN, according
to' the user's options. The listing, if

Section 2: Co.piler Operation 51

requested, is produced on SYSPRINT. the
compiler statistics for the compilation are
froduced on SYSPRINT.

The formats of the TXT and RLD cards are
described in the publicaticn IEM System/1~Q
operating System: Linka9~_~Qit2~_~~2g~~~
loqic~~~~!. The object module listing
consists of·the following fields~

58

• Location, which is the hexadecimal
address relative to the beginning of
the object module contrel s~ction, of
the displayed instruction.

• Statcrrent number (entitled STA NUM>,
which is the consecutive statement
number assigned to the sourc~ module
staterr.ent for which the displayed
instruction is part of the code pro
duced. This value is given in decimal.

• Label, which is the statement label, if
any, applied to the statement for which
the; code was produced. The statement
label is given in decirral.

• Operation code (entitled OP), which is
the symtolic operation cod~ generated.

• Operand, which is given in assembly
format but does not contain any vari
able names.

• Operand (entitled ECD OPERAND), which
contains the symbolic name of the vari
able referred to, in the source module
statement which resulted in the code.

The compiler statistics are the final
output from phase S. The for~ats for the
wessages which provide compiler statistics
for the compilation are as follows:

.OPTIONS IN EFFECT. option{,option} •••
*OPTIONS IN EFFECt. optionl,option} •••
.STATISTIC~. SOURCE STATEMENTS=nnnnnnnn1,

PRCGRAM SIZE=nnnnnnnn2

and

.STATISTICS. NO DIAGNOSTICS GENERATfD

or

.STATISTICS* nnn DIAGNOSTICS GENERA'IED.
HIGHEst SEVERIty CODE IS n

where:

nnnnnnnn1 is the number
ments expressed
integer.

of source s~ate
as a decin'al

nnnnnnnn2 is the size, in bytes, of the
object modul~ expressed as a
decimal integer.

nnn is the number of diagnostics
generated expressed as a decirral
integer.

n is the condition code.

The first statistics message (giving
source statements and prograre size) is
suppressed whenever a BLOCK DATA sUbprogram
is compiled; however, the two options-in
effect messages and one of the other statis
tics messages will still appear.

Chart 00. IEYFORT (Part 1 of 4)

IEYFOIIT

" •••• A2 ••••••••••

: IEYFOIIT :

I
: i2 :

• INITIALI U: •
• AND SET SAVE •
: IIEGISTEIIS : · .. T · ..
: •••• C2 ••••••••• :

• IIIAIIl.E •
• INTIIIRUPTS BY •
: SPII MACRO :

.... . .
: Al :

IEyrOl ! .····Al··········
:!~~~!.-.-~~~:
• INITIALIZE •
• TIME AND DATE •
: •• ~~t~~I~~ •• :

I ······8]···········

.. ···T·····
. ..

., C3 "._

. ' 'o. NO
•• LOAD OPTIOII •• ---1

'0 .' '0 o •

lEYPRNT

• •••• A_ ••••••••••

: I EYPIINT :

······1······
:•.......... : · . • INITIALIZE SAVE.
: REGISTERS :

····· .. T·······
: •••• c •••••••••• :

• SAVE •
• LIIiE COUNT •
: ORIGIN :

I 1
. YES : .::.:

····· .. T·· .. ··· :.::.:
••• IEYF22 1

: •••• 02 ••••••••• : · . • INITIALIZE BASE.
: REGISTERS :

I ·····12··········
:~~~~~.-.-~!:
• SCAli •
: C~f5~= :

······0)···········
SYSTEM

OPEN FOR
SYSLIN 1 · . • EJ ._>

IErr05 •••
El ••

•• •• NO
•• DECII OPTIONS •• ---1 .. .-.. . . ·0.·

0" •• • •••• os •••••••• ••
•• •• .PRNTHEAD 01A2. o. .0 ns .-.-.-.-.-.-.-.-.

•• BIGIN NEW •• -------->. PRIIiT •
••• PAGE • • • : PAGE HEADING :

. ... ··1··~O ·······:L······
IEY:~i:· .-> • ••• I.~ .•. :

: •••• E :

• ADVAIICI: •
: LI liE COUNT Oil! :

1 ... j '" :::::: 1 . ..
F2 •• ······Yl ... ········ F.. ••

ot '.
•• DDIIAMES '. NO SYSTEM

'. SPECIFIED •• ---1 OPEN FOR
•• •• • SYSPUNCH

'.. ..'
··.·;ES • •••• • •••• I
1 : .~!.: : .:!. :->

IEYF10

:~~~::::;;~~: : .. ;:~;;::;;: ... :
• SCAN • .LIII£S/PAGE FOR •

:'m~~~!m .. : :::~:~:.:~::::

).. j

•• MAX .0 YES. •
•• LINES USI:D •• ---->. 05 • . o· ••

l
NO

...
Gil •• .• ·0

NO •• CAaIIIAGE •• YES • ADVANCE •
-_-.. COII'I'ROt<oO •• -------->.1.1 HE COUNT ONE • ·0 : :

. :~ ______________________ J

: •••• G!» ••••••••• :

..
H~

...... .o. ... NO . ····H3········· .
·.IIEADING DATA •• ---1 •. IEYPAR •• " .. ' 'o. .. ' •••••••••••••••

'o. .'

.. .. o. MAX •• YES. *
•• LINES USED •• ---->. 05 •

to •• ••
·oo ... • •••

•.. * i 'u ::::::

• NO

::::::---->1
· .. ··32··········
:~~r!._._~~!:

: •••• J :

• STORE 1.1 NE •
• INITIALI IE •
• HEADING •
: •• !~~~t!~ •• :

) ...
: Al :

• COUNT INTO •
: SYSPRT FORMAT :

······ .. r······
·····K .. ·········· • SET. • ••• K!» •••••••• •
• PARAIIETERS AND • • RETURN •
• PilI NT ADDRESS!S.-------->. TO CORPILER • : .. :::.:::::: .. :

Section 2: Compiler Operation 59

Chart 01. IEYFORT (Part 2 of 4)

ERLXITPR

• ••• ·Al*··· ••••••
EREXITPR

...............

'II . ·····Bl··········
• SET •
• ERaOR CODE: •
.KESULTING FROM •
: PRINT ERROR :

.................

L>:~i:· . . .
IEY/",Ok

... ·Cl'········ · . • I Enl0R ·

I ·····01····· · . • ISSUE GET~~IN •
• FOR 11K BYTES OFO<--
• STORAGE • ·

j
. ..

E1 ••
. ' '.

YE5 .' '.
---.'. SUCCESSFUL •

. .
'. .'

1" Fl*········· · . ° DELETE •
• INACTIVE-MODULE· · .
• 0

j .
G1 o. . . '.

•• iii ER I:. •• YES •. ° A~'{ DELETED 0.0 __ _
'. .'

• NO

j
: •••• Hl ••••••••• :

• i<ETURN WITH •
• POSITIVE •
• CONDITION CODE • ·

-----------!
·····Jl········.·

60

• IlETURN •
• wITH •
• :-ION-POSITIVE •
• CONDITION CODE • ·

PRNTHEAO

· ····"2····
PR"ITrlLAD ·

I ·····82··· · . ADVANCE •
PRINT PAGE

COU~T ·
j

·.···C2···· · . • CONVERT •
• PAGE COUNT TO •
: DECIMAL :
.................

j
·····D2·········· · . • SI:.T PAG': COUNT •
• INTO HEADING •
• FOR.-'AT ·

j
. E2····· · . SlT PROGRAM •
• NAi<lE 1 NTO •
:HEAOING FOR.-.AT :

1
••••• F 2 •••••••••• · . .SET PARAMETERS •
• ArID ~OORl::SSI:.S •
• INTO SYSPRT • ·

j
·····G2·········· · . ..
• SET •
• LINE COUNT TO •
• TWO • ·

1 . ..
H2 •• . ' '.

. ... · .
• &3 • ·
1 ······B3···········

PRINT HEADING

1
: • ••• C 3 ••••••••• :

• AuVA'IICE •
• LINE COUNT TWO • · . ·
: .::. :_>j ·

PRlIIJ05 ·····03·········· · . SET LINE •
COUNT AND •

• ORIGIN :
j

·····E3·········· • SLT •
• CARkIAGE •
• CON'l'ltOL TO •
• SKIPP1NG LINE • ·

j
····F3········· · . • RETURN • ·

•• •• NO • •
•• OPTIONAL •• ---->. 03 .

•• HEADING •• • • '. .'
' .. '

j'"'
·····J2··.······· • ObTAIN •
• OFFSl"T AND •
• CONTROL BLOCK •
• INFORMATION • ·

1 · . • El3 • · .

IEYREAD

····A .. ······•·· · . IEYRUO :

I ·····B"·········· · . • SET BASE: •
• AND SAVE.
• ItEGISTERS ·

j · .
: .~:. :--1 ... (,

•• CII .'. : •••• C5 ••••••••• :

•• •• NO .SET PARAM~TJ::RS •
•• FIRST CARD •• -------->. AND ADDRESSES •

•• READ •• FOR SYSIN •
•• •• FORMAT· ' . . '

RE~~' 1
m

1
••••• 011.......... • ••••• D5 ••••••••••• · . • OtiTAIN CARD •
• OItIGIN AND •
• RE.SET FLAG • ·
: .::. :->1 ·
·····EII ••••• • •••• · . • RESTORE •
• SAVE REGISTERS • · . ·

I
····FII· ••• •• •••

• RETURN •
• TO COMPILl.R • ·
.... · .

• Gil .--1 ·
·····GII·.········ · . • SAVE CARD •
• ORIGIN OR l:.OF •
• NOTATION • ·

1 · .
• Ell • · .

• SYSTEM GET •

• o~~2R~I:.EOF •

1 . ..
£5 ••

NO •• • •

[

--•• CONCATENATLO ••
..DATA S£'1S."

'. .' ' .. '
: .::. : j. YES

··.··F5··········
• SET SWITCh 6 •
• f'OR •
• CONCATENATl:.lJ •
• DATA SETS=O • · "

! · . • C5 • ·

Chart 02. IEYFORT (Part 3 of 4)

EREXITIN

····.1········· · . • EREXITIN
I
I
V ·····81·········· · . OBTAIN

SYSIN ERROR
COUNT ·
I
v

••• EREX IN05
(1 *. • •••• C2 ••••••••••

• * *. • •
•• •• YES • SET •

•• ERROR CODE 0 •• ---->.TERMINAL ERROR •
•. .* • CODE • *... . . * •• * •••••••••••••••••

j"0 I
v v .···.0 l.......... 02 · ..

SETUP BAD .SET UP BAD CARD.
CARD IMAGE .AND ABORT CDMP •

MESSAGE • MESSAGES • ·
I
V ·····EI·········· :~~~!~~~.-.-~~:~:

PRINT •
ERROR •

• MESSAGE •
I
V

••••• F 1 •••••••••• · .
• SET •
.TERMI NAL ERROR •

• CODE -·
I
v

·01 •
•• c~.

. . ········i········
I
v ·····E2·········· .PRNTMSG 0 3A I.

*_*_e_e_*_e_*_*_*
• PRINT -

MESSAGES :
I
v

·03 • • _A:.

IETPCH

. ···A3··.······· - . IETPCH
I
I

. -...... 4t----;

• ••••• I
V

SYSTEM
- PUT ROUT I NE •

INSERT FILE
• PARAMETERS
: -::-:->1
C C i

V IETF70 V .. ···B3·········· · -- INITIALIZE •
• BASE AND SAVE •
- REG I STERS • ·

I
I
V ...

C3 ••
•• * • .* •• NO

• •• ~OAO OPTtO~ ••• ---,

. . I • •• * v
• YES •••••• I : G3 :

V .•.
03 -.

•• LOAD -- •
• - ~ILE -. YES

•• TERMINATED .-1 .. .-a. ._

•• •• V i NO :"::':

V .····E3·········· · . • SET PARAMET[RS •
- AND ADDRESSES •
- FOR STSPCH • - -.

I
V . .. ···Fl··········· SYSTEM

• PUT ROUT I NE
INSERTS

• PARAMETER __ :~~~~::H._
_cccc. I,

• G3 --> - . •••• y
IEYF60 •••

G3 ••
•• •• NO

•• DECK OPT I ON .-1
•• • * v i YES :*::-:

V .-.
HJ * •

•• OECk ••
• - FILE •• YES

-. TERMINATED .-1
•• •• V

• NO ••••

I
I
V ·····J3·········· • INSERT •

PROGRAM
SEQUENCE

NUMBERS

-.................
I
V .. ···K3·········· · .

. -
: 84 :

·····a.·········· - .
- RESTORE -
-SAVE REGISTERS.

- . -
I
I
v ····C.········· - . RETURN

TO COMPILER

• SET PA"ANETE"S • • •
- FOR SYSPCH --->. A4 -· .. . ·

EREXITPC

···· ... 5········· - . EREXITPC
I
I

i
v

: •••• as ••••••••• :

SET FLAG
TO TURN OFF

STSPCH · -.
I
I
V ·····CS·········· - . SET

ERROR CODE
VALUE
I
V ·.···05·······.·· - '. • SET FLAG TO •

- TURN OFF LOAD -
• LINKAGE -- -.................

I
I
v ·····ES·········· · .

• SET ERROR •
- CODE FOR LINK.
: EOIT OUTPUT :

I
V

: B4 :

Section 2: compiler Operation 61

Chart 03. IEYFORT (Part" of 4)

PRNTNESG

····Al········· · .
• PRHTNSG

V ·····8l·········· · . • INITIALIZE
• PRINT BUFFER
: WITH BLANKS

I
V ·····el·········· • SET UP •

• PR I NT BUFFER •
• ORIGIN AND
: DISPLACENENT

I
v

: •••• 0 •••••••••• :

• GET NESSAGE •
LENGTH AND •

• ORIGIN •
I
v

: •••• El ••••••••• :

• PLACE •
•• ST MSG SEGMENT.
• IN PRINT • : ~~::;: :

I
V ·····Ft·········· • GET •

• LENGTH AND •
• ORIGIN OF 2ND.
: MSG SEGMENT :

I
v

: •••• GI ••••••••• :

PLACE 2ND •
• SEGMENT IN
: PRINT BUFFER

I
V ····.HI·····.·.·. · . SET •

CARRIAGE
CONTROL ·

I
V ······.11·····.·.· ..

. 62

SYSTEM PUT
ROUTINE WRITE

• NESS AGE •

V ···.K'·· · . "eTURN •

· .
• A3 • · .
I

· . * ... *---,
- • I

V
IEYRTN IEYF IHAL V ... FREEPOOL

.. ••••• 2

IEYRETN

I
v

: •••• 82 ••••••••• :

• INITIALIZE •
• BASE AND SAVE •
• REGISTERS :

I
V ·····e2·········· • OBTAIN •

• CONPILER •
·COMMUNICATIONS •
• ORIGIN •

I
v

: •••• 02 ••••••••• :

• GET CONDITION.
• CODE RETURNED •
• BY COMPILER •

I
v

: •••• E2 ••••••••• :

.TEST LAST ERROR.
• CODE VS •
• PREVIOUS
• SETTING •

I
V ····.F2·········· • SET •

• FINAL ERROR •
·CODE 1;0 HIGHEST.
:VALUE RETURNED:

I

·····A3·········· • RE-INITIALIZE •
A4 ••

• BASE AND •
.SAVE REGISTERS.

•• DECK •• NO
•• OUTPUl •• --,

• FOR CONPILER • •• STOPPED •• I
• TERNIHATION • •• •• I •• •• V

1

• YES ••••

V 1 ... V
B3 •• ······s.···········

•• LOAD •• HO

•• OPTIOH '*, •• SPEC IF lED •• • PRINT DATA
SET STATUS

NESSAGE

•• •• y •••••••••••••

* YES •••• I
I
I ~ G3 ~ ~.::.~_>
V IEYFNL10 V

: •••• Cl ••••••••• : : •••• c •••••••••• :

ISSUE • ISSUE CLOSE •
CLOSE FOR • FOR SYS I NAND •

SYSLIN • SYSPRINT • · .'
I I
v V ·.··.03 ••• ••••••• • •••• 0 •••••.•••..

• FREEPOOL 031.5. .FREE .. OOL 03A!5. *_._._._._*_e_._* e-._._._*_*_._._.

- .
• C_ • · -

• FREE STORAGE • • FREE STORAGE .---,
• USED BY • USED BY SYSIN· I
: •••• ~!~~!~ ••••• : :.:~~.:!~~~!~! .. :!

1

....
*. : HS :
: Eo' :,

y •••• y
••• IEYA50.·.

E3 e. E. ••
.e a. .e e.

•• •• NO •• RELEASE •• NO
·.SYSLIN OUTPUT •• , •• STORAGE '.--1

e. •• •• ••
a..* ••••

•• •• y •• •• V
• YES •••• • YE~ ••••

1
V . ·.· .. F3·····.·····

PRINT DATA
SET STATUS

MESSAGE
.... 1 · . • G3 .-> · . •••• V

• • •••• I *.
: G3: : F_ :_>/ : 112 : · . /

V
••••• F ••••••••••• · . .OBT A I N A:lDRESS •
• OF BLOCK TO •
: RELEA"E :

I
V IEYFNL05 ••• V

: •••• G2 ••••••••• :

• INSERT 'NAIN' •
• FOR PROGRAM .,
• NAME OF NEXT •
• PGN •~ · .
: H2 :-,
•••• y

IEYR60 •••
H2 ••

.* •.

. .
: E. :

•• ANOTHER •• NO
•• COMPILATION •• ,

•• •• y

.1 YES * •••• •
• 1.3 • . .

V
: •••• J2 ••••••••• :

G3 ••
•• DECK •• NO

-. OPTION •• ,
·.SPECIFIED.·

•• •• y
• YES ••••

1
V

: •••• H3 ••••••••• :

• ISSUE
CLOSE FOR
SYSPUNCH ·

I
V ·····J3··.··.·.·. -FREEPOOL 031.5.

. .
: C_ :

: •••• G :

.ISSUE FREE"AIN •

.FOR RELEASE OF •
• STOHAC.E :

1
V 0·.

H4 ••
•• e. o. END OF •• YES

•• STORAGE TO •• --,
••• ~ELEAS~... /

*. •• V
• NO ••••

/
V · .

• F ... ·
· .
: H2 :

• RE-INITIALIZE •
.LINE. CARD AND.
• PAGE COUNT *

.-.-.-.-.-.-.-.-* . .
• FREE STORAGE .-->.1._.
• USEO BY • • •

SYSPUNCI1
I
V

: •••• K2 ••••••••• :

• IIIESTOIIIE. • ····1(3· •••••••••

.SAVE REGISTERS .------->. IEYPAA • · .. ·

·.··AS····· · . FREfPDlIL ·
I
I
I
I
V ·····ss·········· · .

• LOAD DATA •
SET BUFFER

ADDHfcSS

I
I
I
V ·····e5·········· · . - COMPUTE •

.SI ZE OF AREA TO.
- BE FREED -.

I
I
I

j
V ·····OS··· - . .ISSUE FREE"AIN •

• FOR DA T A S[T •
• 5 TCHAGl ·

I
I
I

I
I
V ····ES····· .. ··· · . RETURN

· .
• "'S • ·
I
V

• •• ··HS··· ••••••• · .
• SET EHROR -
.CODE FOR RETURN.
- TO CALLER -·

I

I
I
I
V · ····JS········· .

RETU~N

Chart AA. OPTS CAN

····A2········· · . OPTSCAN ·
I
I
V ·····82·········· · .

• GET •
• PARANETER LIST.
• LENGTH •

I
I
I
v ...

(2 *.
NO.* ... p..y -.

,
•• OPTIONS ••

•• SPEC I FlED ••
. .

y * •• *
• ••••• • YES

• f3 • I •• I
v ...

02 •• . - ..
YES .* -.

i
.. CONNA PRESENT.· .. .-

a. .* ••• *
• NO
I

1
I
V ·····E2·········· · .

- SET TO SCAN •
- ONLY 8 CHAR. •
• IGNORE ANY OVER.
- 8 •

I
V

: •••• F 2 ••••••••• :

- ADVANCE •
.PARAJoIETER SCAN -
- "POINTER •

PROSSQT

I
i

> I
I
V ...

\;2 *.
.* ••

•• PROGRAM •• YES
*. NANE •• ,

•• SPEC IF lED. *
*. ••

* •• * 'V
• NO ••••

.... · .
• A3 • · .
I

PRS20 V A3·········· · .
• SET INDICATOR.
-IN POINTER FOR.
• COMPILER • ·

I
I
V

PRS22 ••• PRS23.*.
83 •• a4 •• • •• ··SS.···· ••••• .• *. •••• • •

•• •• NO •• •• YES •
•• NAJoIE~ QUOTE •• ------->.. LINECNT= •• -------> • SET FL AG

*. •• •• QUOTE •• •
*. •• -... .

* •• * ••• *
- YES NO
I

:.~~-:->I
PRS25 V C3·········· · . SET PROGRAM •

• NAME IN •
.COMPILER COMM. •
• AREA •
.... I · .

• 03 .->
• • <

PRSOUT V .····03·········· · .
• RESET
• SCAN CONTROL
• FLAGS

I
• •••• • I

: E3 :->1
•••• I

OPTS10 V .···.E3·········· • OBTAIN •
• SYSTEJoI •
.CENERATED NAME •
• OR PGM NAME • ·

I
V Fl··········

SAvE •
NANE FOR

• MULTIPLE
• COMPILATIONS ·

••• OPTS20
G3 •• .• •. ····G4 •• ••·.••·

•• WAS •• YES • *. NAME OPTION .*---). 'lETURN
•• GIVEN .* • • *. •• • ••••••••••••••

* NO

I
I

I
I

I
I
I
I

I
I
J

I •• I .--_________________ --ll : C3 :

~ ...
til .•• • •••• H2 ••••••••••

.- *. • COMPARE .. o. LINECNT •• NO • PARAMETERS *
•• SPECIFIED •• ------>.SPECIFIED WITH.

•• •• • PARAM TABLE • .. . -
* YES
I

I
I

PAS30 V
: •••• J •••••••••• :

PREPARE
+ CONVERT

L INECNT
I
V · .

• 03 • · .

I
I
I
V ...

.J2 ••
YES •• PARAM ••

,
•• IN TABLE ••

it. ••
•• .it

Y it •••
•••• • NO · • A3 • · . I

V
• *
• 03 * · .

I

I
V .·· .. H3··········

• * · .
• INSERT" SYSTEM •
• NAME •

I
I

I
I
I
I
V

• •••• JJ ••••••••••

rtE TURN ·

Sect:ion 2: Compiler Operat:ion 63

Chart AB.

64

DDNAMES

· ····.2········· .
OO ... AMES

V ·····C2·········· " " " 08TAIN "
"LENGTH 0 .. DATA "
• SET NAMES :

I
v ...

02 ••
.* e.

•• DOES •• NO
•• LIST ElIlST •• -------.,

·····r::·· I
: •••• E2 ••••••••• : V

• ADYANCE LIST ••••• El ••••••••••

• POI ... TER TO • RETURN:
• FIRST E ... TRY : •••••••••••••••

v
: •••• G2 ••••••••• :

• INSERT •
• ENTRY I NTO DeB •
• FOR SY'iL IN :

I
v

: •••• HZ ••••••••• :

MOVE
• POINTER TO
: FIFTH E ... TRY •

I
V ...

J2 •• . - .. • * DOES *. NO • •
•• ENTRY ElIlST •• --). H4 •

. . ••
*. .-a •• _

• YES

I
V · .

• A4 • · .

.... · . : .::.:l
V .····A •...•..• •·· · . " INSCRT •

• ENTRY INTO OC8 •
• FOR SYSIN •

" "
I
V•........... · . " NOVE

" POINTER TO
• SIXTH ENTRY

"
I
V .•.

C4 ". •• *. • •••
•• ODES ". NO • "

". ENTRY EXIST •• --). H4 •
. . ••

*. .-
a •• *

j'"
V ·····04 .. · ··· " " " INSERT "

"ENTRY INTO OCB "
" FOR SYSPRT "

"
I
V

: •••• E •••••••••• :

.NOVE POINTER TO"
: SEVENTH ENTRY :

"
I
V

." .
F4 * •

• a * •
• " ODES ". NO " •

". ENTRY EXIST ."--)" H4 " *. .* ••
a..* •••• .. . -

j'"
V .····G.· ··.

" " " INSERT "
"ENTRY INTO OCB "
" FOR SYSPCH "

" " · I
: .::. :->1

OONMOUT
V ····H ••. ··· .. ·· " " • RETURN

Chart AC. HEADOPT

.···A2········· · . · · HEADOPT

...............

I
I

I
V

•

·····B2·········· · . OBTAIN LENGTH.
OF HEADING •

• OPTION • •

I
V

0 11 0

C2 .0
0..0 •••• C3·.··· •• ·· o. .0 NO. •

.oHEADING LIST 0.-------->. RETURN • .0 EXIST o. · • ·0 o. • ••••••••••••••
* •• *

• YES

I
V

·····02·········· · . • SET UP •
• CENTERING OF •
• PAGE HEADING •

•
I

I
I
I
V

·····E2··***····· · . • FORCE 119 CHAR
LIMIT FOR
OPTIO'lAL •

• HEADING •
I
I

I
V

·····F2·········· • SET •
• HFAOING ORIGIN •
• ANO LENGTH INTO •
• PRINT MSG TABLE. ·

\
I
I
I
I
V

····G2········· · . RE T'JRN

...............

Section 2: Compiler Operation 65

Chart AD.

66

TIMEDAT

····AZ········· • • • • TIMEOAT

•••••••••••••••
• •

V

·····8Z·········· • SET uP •
• UNIT •
• SPECIFICATION •
• FOR TIME OF OAY.
• • •••••••••••••••••

v
·····C2·········· • GET •
• TIME AND DATE •
• FAOM SYSTEM •
• SUPERVISOR • • • •••••••••••••••••

V

·····OZ····· .. ··. • •
• INSERT •
• TIME INTO •
• HEADING LINE • • • •••••••••••••••••

V

·····EZ·····.·.·. • •
• INSERT •
• OATE INTO LINE •
• • • • •••••••••••••••••

'v
····~2········· • •

• RETUAN • • • •••••••••••••••

Chart 04.1.

START
COMPI LJ,.I<

~)1 ATi',t·1i:.N.
jJHC,Ct.:;:;

PHASE 1 - PARSE (Part 1 of 2)

G0630

• ···A2········· · . IEYPAR

1 ·····82·········· · . • PROGRAM •
·INITIALIZATION • · . ·

1 ·· .. ··C2.····.····.
READ ONE
CARD INTO

t' I NFUT i .. RLA
1 ·····02········· . • TURN ON FLA':;~ •

• INDICATING •
• FI RST STMT AND •
• PRiVIOUS PRINT •
• CO~PLETe •
•••• I

: E2 :->1
t;0611

•••••• E2····.· •••••
PRT/RD SHC-6M2

• -+-+-+-*-+-+- ••
PR I NT ()LD STMT
•. ~~ID H1ROf{S •

Rl:MJ NHI

'''''' 1 F2*········· • STA INIT-b6A2 •
+-+-+-+-+-+-+-+-+
• INITIALIZE
• FOf;. NEW
• STATE~.ENT •

Go,,, 1 *G2·········· • LP.L XLATE BCA2.
--*-t-*-.-.-'t-'t
• PROCESS LABI:.L •
• FIELD AND •

celL 6 • .. .,.
j .. .

H2 •
• ' LI'.BFL •

Yf S .' OR '.

!
--., COL 6 "

'. t:RRORS , •
: .::. : l' NO . .

G0616

·····J2····.····· • STA XLATE- BDA1.
-+--*-*-*-+-+-+
• PROCESS

ENTIRE
STATEMENT •

1 · . • 611 • · .

THIS IS THE FIRST
CARD OF THE FIRST
STATE-MENT. INITIAL

gg~~~T¥n~~ E 0~nn1~N.

".T COMPLETION OF
PRINT AND READ
SOURCF, STMT TO
AF PROCES.':ED IS
ON SOURCr. RULL,

· .
• BII • ·

G0633 ! ·····Sll·········· .STA FINAL- 6E~2.
*- *- *-.- *- *- *- *-.
• COMPLT POLISH. •
• CLOSE. DO LOOPS ••
• MOVE POL!SM. • •................

1 .•. cu .,
,. LAST .,

NO •• STMT OF ••
r --•• SOl,lRCE. I'10QlJLE , •

t
.. t'j(UL.t.~bJ:.,U.·

'. .' '. .'
: .::.: 1. YES

. ..
D4 ••

.' '. YES ,. LAST "

r
--.' STMT FLAG = ••

• (END C~RO), •
'.

:.;:.: I. NO
· £.4··.·.·.·· . · . • I<ECORD •
• • NO END C~RD' •
• ERROR MESS~GE • ·

:';:.:_>(· ····.FII••.... · . • SET INDICATOR'
• FOR ReAD •
• COMPLETE

(
· ····G4 ···· . 'PRT/I<D SHC-BAA2 •
*- *- *- *- *- *- *- *- ..
.PRINT OLD STMT •
• AND ERRORS. •
• READ NEW STMT •

! · .
• B5 • · .

Section 2:

· .
• B5 • · . · ...
t · .,

B5 ••
.' '. YL':;.. WAS ••• r- _ •. ~~ER~A~~ Em:.' •

v •.•..• ' ~
••• * • NO

•. I • H5 •

• •••• • v
· ..

ee; • , . .,
,. LAST ., NO

" STMT ~N ARITH, ._--,
• , IF' , •

• YES

GOB," j .. ···05 .. · .. ·
.PROC POL 6GA~.
.-.-.-.-*-*-*-*-*
• COPY POLISH •
• ROLL TO AFTER •
• POLISH ROLL •

I r----------
v

*063003 .•••
E5 ••

.' '. YES •• LAST .,

r
--.. STATEMENT A "

., BRANCH , • . . .'
'. .' •••• • NO .. 1 • H5 • ·

G06112 F5·········· .~CT END ST BFA~.
• - *- *- *- *- *- *- *-.
• BUILD •
.RETURN OR STOP •
• POLISH •

GOO" I ·····Gs· ···· . .STA FN END IlED~'

.-*-i-*-*-*-'-'-'
.COMPLETE POLISH.
• WITH STMT CNT •
• ~ND MOVE •
: .::. :->1 · * 0630011 ·····HS·········· · . • PLACE •
• END DRIVER ON •
• POLISH •

GOO" 1 ·····Js·········· .ST~ FN END BED.,.
*- *- *- *- *- *- *- *-.
.COMPLETE POLISH.
• WITH STMT C~ •
• ~ND MOVE •

1
·011.2.
• 62· · . •

Compiler Operation 67

Chart 04.2. PHASE 1 - PARSE (Part 2 of 2)

.....
·04.:;>·
• B2· . . .

.... · .
• B3 • · .

! !

.? *63181 t
B2 •• • •••• B3 •••••• ••••

.. ' '.. . .
•• XTEND •• YES • CLEAR RESERVE •

'. LBL ROLL •• -------->.MARI< FROM XTEND'
' .. RESERVE.D .. ' * LBL ROLL * . ..' . .
·······I·~O ,

: C2 :->
'0611;;·· ~ 1 •••• ·C2·········· · . • REMOVE •

• GROUP FROM • <----------------
.XTEND LBI. ROLL • ·

I
~

.•. ~06)188
02 • .. • •••• 04 ••••••••••

•• •• • SI:.T LOOP •
• XTEND •• YES • DATI:. POINTER • LBL ROLL •• __________________________________ >OON SCRIPT ROLL,o

EMPTY .0 0 RELEASE •
'. .' • IND VAR ROLL • '.. ..'

1'0 I
v

. '. . .. · • E2 '. • E3 o. 0 ..1:.4 ' ••

.0 t.NO o. YES .0 TEMP o. YES . - PGM A •• YES
o. OF DO LOOP .0 ________ >.. ROLL EMPTY •• ---1 o '. SUBPROGRAM

.0 _______ >
'.. ..' '.. .. . '.. ..'

'.. ..' '.. ..' i NO to NO :O:~.:
t

• 0 • Fl.......... F2 too ••••• F)•..
t • .0 (;ROUP •• 0 TAG GROUP AS •

RI::MOVI:: • NO • t TAGGED AS O. t POSSIBLE •
(,IWUP FROM t(________ o. POSSIBLE •• -EXTENDED RANGE -

WORK 1t0LL' •• RE- ENTRY •• • CANDI DATE ON •
- • •• POINT.. .LOOP DATA ROLL. '.. ..'

1
o 0

: C 2 :

• 'iE.S

• ",,"0 j
: •••• G2 ••••••••• :

• PUT •
• GROUP ON TEMP •
: ROLL :

I
~ - . • C2 • ·

I
V ·····G3··········

• TAG ThOSE -
• LABELS ON LBL •
.ROLL WHICH MAY.
• BE RE- ENTRY •
• POINTS •

j
·····H3·········· · . · .,
.CLEAR TEMP ROLL. · . ·

.
o •• -• ~Jtj

I v ...
t 4 ••

• BLOCK •• YES
DATA •• ------->

•• f'ROGRAM ••
• NO

j
..... G4·········· · . • SET SYMBOL A~D •
• MODE FOR I BCOM •
: ROU1INE CALL :

I

j
·····H4 .. ·.····· . · . • MOVE IBCOM •
• POINTER TO •
• AFTER POLISH
• ROLL •

1 · .
• B3 •

""'01 1 <----------------

· . ••• •• J4 •••• •••• •• · . • INITIALIZE •
• FOR OPERATION •
• OF ALLOCATE • ·

j
.···1<4·.·.····· · . • IEYALL • ·

Section 2: Compiler Operation 67.1

Chart BA.

PRINT A CARD

68

WRITE LISTING AND READ SOURCE

G0837

····A2·········
• P~INT -
:AND ~EAD SOU~CE:

I
I
v

: •••• 82 ••••••••• :

- TU~N
• OFF NO P~INT
: FLAG

I
v . -.

C2 -.
• * *.

-+ .::~;~:?;: 'lYES

.-.
02 *.

• - SOURCE •• YESV
-. LISTING ••

·.~EQUESTED.·

*. .-
* •• *

• NO

I
v

: •••• E2 ••••••••• :

TURN -
ON NO PRINT

FL-'G

I' '83707 V
: •••• FZ ••••••••• :

* INITIALIZE •
* STATEMENT CO •
• COUNT • ·

'-1'-8-3-7-0-1 --:I. . """
G2 *. • •••• G3 ••••••••••

• * *. • •
• * PRINT *. YES • MOVE 1 CD TO -

-. OF STMT .----->-SOURCE ROLL AND-
•• COMPLETE .* - SET CONTROL -
.. • •

* •• * •••••••••••••••••
- NO

I I
v

V .-. ····.·H2··········· H3 *.
.* * •

P~INT ONE - • - ENO -. YES

* •
• B4 -.
I
V ······B4·· ··

INIT IALIZE
• FOR NEW STMT ••

READ ONE CARD
• AND PRES CAN •

•••• :!:! •••••

.----J v
'083703 •••

C4 *.
•• * •

.* *. NO

-.MORE TO READ '-, .. .-a. ._

* •• *

j'"
'83703 V ······0.···········

• WAIT FOR LAST -
READ COMPLETE

-ANO READ ONE •
CARD

CARD AND ITS
- ERROR MSGS • -. STATEMENT '-1< -. PROCESS •• a. ._

* •• *
• NO

I
y - -- 84 • '083704 V
•• ••••• J •••••••••••

- TURN OFF -
- FLAGS •
- INDICATING NO -
- MORE READ AND -
- NO MORE PRINT -.................

V ····K.····.····
- -RETURN --

"'lIT
READ A CARD

READ A CARD

Chart BB. INITIALIZE FOR PROCESSING STATEMENT

G0632

****A2*********
* * srA INIT •

I
I
I
V

*****82**********
* * INITIALIZE *

CHARACTER *
* COUNTS *
* *****************

I
I
V

*****C2**********
* * *SET CRRNT CHAR *
TO FIRST SOURCE
* CHARACTER *

* *****************

V
*****02**********
* SET *
COUNT OF SOURCE
STMT CHARACTERS
*TO NO. CARDS X *
* 80 *

V
*****E2**********
* *
* * * CLEAR FLAGS *
*
*

*
* *****************

V
••• ·F2-;..;. ... •

* * * RETURN
•

*
*

section 2: compiler Operation 69

chart BC1.

STATUS CONTROL

DIGIT
COIW]"RSION

CONVERT ONE DIGIT

REGISTER LABEL

70

PROCESS LABEL F'IELD (Part 1 of 2)

GO&35

· ····A2········· .
:LBL F'II:.LD XLATf!

j
·····S2·········· • SAVE ADDRt:SS •
• OF CURRF.NT •
.BOTTO!". Of WORY •
• ROLL AND k:X IT •
• ROLL •

1
••••• C2 ••••••••• 0

.SET STMT LABEL 0

• POI NTER TO 0 •
• AND S~IP TO •
• FIRST NON-BLANK.
o CHARACTER •

J
.' .

• ll2 ' ••
~Ob3503 .' .

03 '.
. • CHAR '. NO •• MUST THIS '. NO

'. COUNT L~:SS •• -------->.. STM1 HAVE •• ----___ ,
•• THAN b • • •• LABEL .' V

o. .' o. .' .BC2. 1''' r'" ,'l'

·····EL •••• • •• ••• ••••• E3 •••••••••• · .. .
INITIALIZE • LABEL MISSING.

fOR DIGIT • MESSAGE TO •
CONV ERS ION • ERROR ROLL •

o
.... 1 · . • F2 .-> ·

• 0&3501 •
F2 ••

•• •• NO

·
1

·BC2·
• C2· . . .

, . ,~~ , ~ {;~;:' . ,-----------------I (SYNTAX FA> LI

·····G2.......... G3
• CONVERT· • SYNTAX •
• ONE DIGIT TO • • MESSAGE TO
.BINARY. SKIP TO. • ERROR ROLL •
• NEXT NON-BLANK • • RESTORE WORK
• CHARACTER. .AND EXIT ROLLS •

! I
H2 ••

•• CHAR •• YES
•• COUNT LESS •• ---1

•• THAN b ••
* ..•

l
·NO :.;:.:

·····J2·········· • MOVE LABEL •
• TO LBL ROLL AND.
• LABEL POI N'!:·t;R •
• TO STA LBL •
• POINTER •

1 ...

~
····H3·········

• RETURN •
• (EXIT FALSE) ·

K2 •• • •••• K) ••••••••••
•••• • MULTIPLE •

•• LABEL •• NO • DEFINITION •
•• UNDEFINED •• -------->. ERROR MSG TO •

• • • • • ERROR ROLL •
*. .• • •

• "1";£5 ········r········
• BC2. .BC2 •
• A2. • .0.2.

Chart BC2. PRdCESS LABEL FIELD (Part 2 of 2)

rnti-AC'IIVf. [NO
FLJ\'; 1 tiDI('ATE:~
f'1<!:.V IOU:, :;1M'1
;,UIA v:; AHIINCIIU;
"IILN IT I:; 01'.
U::LlJ IN TEXT FOR
,;':NI:.I<Al'IOt< Of'

....
Ol1e I .. ('.; .

I
t

':"1.,,: r"]P FNO :~n'1'.

.....
• BCL •
• A2 • . . ·

_01:>3502 1 ·····A2··········
• 0 MARl<

LABEL A;'
DEFI'lE:D

• 0 ··Be2·······
A7

I
~

• ' A2 ". • /'fNNF:; ". : •••• 1;11 ••••••••• :

• • IN A • YI::.S .' 00 '. Nil • PUT LAB~L •
o. DO LOOP .' ________ >t. CI.Ofil:.U FIJI'; .• 0-------.,. UN •

'. • • • • ON 0 t XTl';NI; LilL ROLL •
o. .' '.. • • •

'. .' '. .0
• NO • Yl:.S
I I

--------------->1<------ ------,,---------- I 1

0 ••••••• i

-01:>1';011 .'. J .'. ~{,f,1"Rl.·.
C2 • • C 3 '. ell ' •

. o. . t IS • • . • I,j •.
NO • t LAST '. NO .' LABEL '. NO .' !.ABEL (;N '.

---'.STMT AN ARITH.' - <--'. I'REVIOU:; _ .<-------- •. XTJ:.ND T',RG .'
'. IF' '. TAl< ;t.T .' • LIlL ••

• • .' • . ' •• RCJLL •

roc j"'r
..... 02............ Dj.......... ;,4 to ••••• DI) ··
'PUT POINTER TCJ t • TAG GROUP ON • .' GROUP '. • TAG GR0UP Otl t
• THIS LABEL. • 'XTEND LBL ROLL' .' TAGGE[) AS '. YES 'XTENO' LEL P0LL t
oMOVE POLI~H TO' <----0 AS POSSIbLE • '. Pv~:';IDLE • 0-------->. A:~ POSSIRLE t

o AFTER POLI~;H oRE-ENTRY POINT' '.RE-ENTRY .' oRE-E;lTRY POINT'
o HOLT, •• • '. P()INT. 0 o. • ---::::::::j......... 'T:"

• Ob 3'>0'> ') E2.......... I:.ta ••••••••••
'SET NON-ACTIVE' ••
'END F!.AG Tv NX~' • RE.MOVE GROUP
• STA LBL fL!\(;' -------------------------------. FROM .<----------------
'AND CLE:AR NEXT' 'XTI::NU TARG LEsL •
• STA LBL FLAG • • ROLL •

1
.' .

F" ' • . ' . . ····F)
• CHAR • NO • RETURN •

• :. COUNT .;'-------->: (EXI1 TRUE) • · .. .
• YES

1 · G2 ' • . ' '. ····G)·.······· • • '. YES • RETURN, •
'. CHAR A ZERO •• -------->. (EXIT TRUE.) •

'. .' . · . .'
'. .'

• NO

1 'SYNT" 'm, ·····H2········· .
• SYNTAX MSG TO •
• ERROR ROLL.
• RESTORE WORI< •
• AND EX IT ROLLS • ·

j
·····J2········· .
• SCAN •
• TO NEXT •
• NON- BLANK •
• CHARACTER ·

1 ····1<2·········
• RETURN •
• (EXIT FALSE) • ·

section 2: Compiler Operation 70.1

Chart BD. PROCESS STATEMENT

G0636 A2.......... A3 ... ····Al·········* ... • •• SAVE. •• ASSIGN- •• NO
STA XLATE .---->. LOCATIONS OF .---->.. "ENT TYPE •

~ = .O;:(K A"D EX iT .. -.STATEMENT.-....•....•..... *... i
I ••••••••••••••••• .. •• *

• YES

1 , I
V ... V · 82.......... 83 ...

• ••• Sl·........ .. RECORD" .* ... ·· .. ·B.······.··. · • •• ILLEGAL • YES.. IN •• • SCAN SHoIT
RETURN • <-----. STATEMENT .<-------•. BLOCK DATA •• • TO DETERMINE

.. .. ~ESSAGE ~ ;.. ;:COUTifoitE .- • TYPE
••••••••••••••••• .. •• * •••••••••••••••••

vr--. _-----'i" I
G0637 ••• V

C2 *. • •••• C •••••••••••
···.Cl.· •• ••••• .* *. .. UPDATE ROLLS ..

.ASSIG~~~~~ STA :~ __ . --->.::TMT FUNCTIO~:._Y_E_S ____________ , ARITH FUNC C~~~~~~CT
• •••• I DEF STA POLISH FOR

••••••••••••••• *..* 1 XLATE STATEMENT 1.:
0

•••••••• j •....•..
I I
I I

v V I
: ••• ~g~;;:~~~ ••• : : •• ~:g!;:.:~~~ •• : I
• POLISH FOR • AND CONSTRUCT. I
• VARIABLE • POLISH FOR • I

_ EXPRESSION _ • F'JNCTI:_O_N ____________ J
I I
L...-..-__ > 1<

STA XLATE EXIT

V
G0732 ...

E3 ••

... *. ····E.····
• - •• NO •

-.SEVERE ERRORS •• ------->* RE TURN
• YES
I

I
V ...

F3 -.
•• •• • ••• F

•• ACTiVe: *. NO. •

EX IT

.0 STATEMENT .*----->. RETURN EXIT
*. .it •

it. •• • •••••••••••••• -...
• YES
I

I
V .••. ·Gl··········

;; -
• REMOVE POL I SH -
- AND REPLACE -
."'ITH ERROR LINK. · -.................

I
I
V .·.·H3········· · . RETURN EXIT

Section 2:

LITERAL TEST

THIS OPE~AT ION
i::' f't:RFORMED BY

THE STA XLATE
ROUTINES

Compiler Operation 71

Chart BE • COMPLETE STATEMENT AND MOVE POLISH

••• */\ 1 ••••••••••

'T/~ ,. I NAL

I
• •••• I~ 1 • " ••••••• · . ~.:,!'I!' •
:.;'1';": r I '(llJNT:

cl · ••• tC:>· ••••••••
• • •• NO •

'. JdJY !·(J!.....I:.H • * ________ >t
o • .

Y I.~

.'.
1)1 · • • '. VI' ~j

THI~; ,'LA. ON lNDlCA1I:;S
ONE OF Till ::TATl"'ENT~;
·,m lCH MAY NOT TLRMI NATf
DO LOOPS

o •
• R4 • . .

~ ()6J)02 1
• •••• fill.· ••••• • •• · . MOVE GROUP
• BACK TO DO •
:LOOP~ OPl:.N ROLL:

~~~~~~~~~~>j 
*O(310) • 

.C4 . , 
,. THIS ., NO 

. .... 
·ElE • 
.~'J •• . 

• ,STMT LABELED ,. -----------------' . , . 
, . 

'. .' 

V
i '" 'TA mAC '"" 

GOb 34 
: •••• u"' ••••••••• : : •••• D5 ••••••••• : 

• • ~ I j~~ P F Li .. ( l (IN •• ' - - -- - - - -- - - - -- -- - - -- -- ----- --------- --------------------> • PUT POIm'ER • • PUT STMT 
TO LABEL ON .-------->. NUMBER ON 

POLISH. : PO~lSH 

" . 
• "Jf) 

: .: ~ • : - > I 
•••• V 

!lIlt) Illll • 
11 · . 

• ' lJJ\'J'/\ ()~ '. '-10 

· ................ . ................. 
f ~~~~~~~~~ ~~~~ -~ ~~~~~ ~ J 

E4 ., 

•• -;HIS STM;- •• YES ••••• E') •••••••••• 
• • '1 ,iF {)( j [,()( lr~; .' -- --- - - - - - -- - - - - ------ ----- -------------------________ --- • ,AN ARITH~ETIC, .-------->. RETURN 

•. l I'"f, KOLL,. · . 
'.' YL!; 

I ..... Fl·········· · . 
• MI'Vt UNF • 
• I;K()IJP OFF Tilt. 
• ROLL • 

1,1 · 
,., 

• (;2 ••• 

., IF " • . . . . . ............. . .. .. 
i" 

·····F4··.······· :MOVE POLISH FOR: ••••• FS········· • 
• STMT TO API'ER .-------->. RETURN • 
• POLISH ROLL • • · . . ............. . ................. 

,., ~063377 

G3 " ••••• G4 •••••••••• .. .. . . 
,. 1111:; ., YES ,. INNER ., N() , • ANY " NO • CLEAR • 

• , :;T~i'j TAR(;rT ,0 ________ >*, Of) CLOSED ,L _______ >., TRANSFERS OUT, .--------).XTENU LBL ROLL • 
• , • Uf LOOP.,. • , F~~G • ., OF LOOP " • • 

NOTE: 

.. .. I N(I 

.... · . 
• P.4 0 · . 

THE TEST COMPARES 
STA LBL Pm'R 
WITH THE GROUP 
FROM THE ROLL 

72 

.. .. 
• Yj,;S 

• "n" 1 ,~~ -~~~--~~ 
·····H2·········· • REMOVE • 
'GROUP DEFI NI!'l<; • 
• DO VARIABLj,; • 
• FROM IND VAR • 
• ROLL • ................ . 

I ·····J2·········· • RESERVE PROGRAM' 

: Sg~~T s~~t~ : 
• ROLL, RELEASE. 
• SCRIPT ROLL • ................. 

I ·····K2·········· .MOVE NEXT GROUp. 
• FROM SCRIPT • 
• ROLL TO LOOP • 

:D~i~ E~RCO~~: ................. 
l .... . . 
->. E1 • . . 

.. .. . . " " ................ . 
if" 

·····H3·········· · . • CLEAR • 
• XTEND TARGET • 
• LBL ROLL • · . . ............... . 

.. ,,'" l ••••• J) ••••••• · . • SET INNER DO • 
-----.CLOSED FLAG ON- .<----------------· . · . . ............ . 



Chart BF. PROCESS END STATEMENT 

G0642 

····1.2········· · ACTiVE Er-.v 
• STA XLATE ................. 

I 

I 
I 
I 
I 
v ... 

B2 •• . - .;.. w_w_63wwiHi ....... 
•• LAST •• YES. • 

•• STATEMENT A •• -------->. RETURN • 
•• BRANCH •• 

*. .* ... . .. 
• NO 
I 

I 
I 
v ... 

. ............. . 

(2 •• • •••• C3.· •••••••• ... ... .. .. 
•• SUBPROGRAM •• NO • BuILD • 

•• BEING •• -------->. STOP POLISH • 
·.COMPILEO •• • ... ... . 

* •• * ••••••••••••••••• i YES I 
1 I ..... 02.......... V 

· . ····03········· 
• PLACE·· • 
• RETURN DRIVER • >. RETURN • 
• ON POLISH.. • • ••••••••••••••• ................. 

Section 2: compiler Operation 73 



Chart BG. PROCESS POLISH 

····"2········· · . • PROCESS • 
• POLISH • ............... 

I 
V 

·····BZ·········· · . GET NUMBER 
OF WOROS ON • 
POLISH ROLL • 

................. 

I 
I 
V 

·····CZ·········· • • 
• PLACE • 
• COUNT ON AFTER • 
• POLISH ROLL • 
• • ................. 

I 
V 

·····OZ·········· · . • COpy POLISH • 
• ROLL TO AFTER • 
• POLISH ROLL • 

• ................. 

I 
I 
V 

·····EZ·········· · . · . • RELEASE POLISH. 
• ROLL • • ................. 

I 
V · ... FZ········· • • 

• RETURN • ................ 



chart 05. PHASE 2 - AlLOCA7E (Part 1 of 2) 

GOlS. 

····11.1···.····· 
• STUT • 
• ALLOCATIOlf • · . ............... 

j 
·····111····· ••••• · . . 

INITIALIZE • . ................. 
. os.. 1 ···.·Cl···.··.· .. .11. LBLlLSPG-CAAla ._._a_a_._a_a_ .-a 

·PU'I' LAIIILS AIID • 
-STItt PUIIC MAlIa. 
- ON IICD ROLL • ................. 

Gom 1 ·····01.· •• • ••••• • PR IOI'PTE.-CBAl. 
~_._ .... _ 1110_._._._. 
:C~ Jt~VfrB: 
'OUTSIOE AIUlAY • ................. 

I ... 
II .0 

•• e. 
•• !SLOCIt DATA '0 110 

• 0 SnCIP'IBO •• ----*. •• .. .. 
* ••• 

• YBS 

1 •••• 01 ••••••••• 
• CHAR't CC • : Al: 
••••••••••••••• 

GO 361 aLOe. 
DA'!'A 
PIOG 
ALLOCATION 

r-------~ 

I
IG03t~ ••• C2 ......... . 

'DMr/P""TIRR-COA2' .-.-.-.-.-.-.-.-. 
.ASSOCIATE DUMMY. 

:O~:~N~InR~rs-s' : ....... ' ......... . 

."" 1 ··.·.02·········· .PIC DO LPS-CU2' 
e_ ._e_e_e -e-.- *_. 
.ClI!CIt fOR UMCLS' 
• 00 LOOPS AND PRe 
.AIfO MAR .. ERRS • ................. 

I 

00372 1 
• ••• ·B2· •• ••• •••• 
'L8L1L SPGS-CPA2' .-.-.-.-.-.-.-.-. 
• COIfSTRVC'T • 
• BRANCI TARLE • 
• ROLL • . ............... . 

"'" 1 • •• ··F2··.·.·· •• • 
.IL PGM ISD-CGA2' .-.-.-.-.-.-.-.-. 
• ALLOC BEADING. 
.IUI AND PCB ZSO. 
• fOR PRO AN !In' • ................. 

. ,," 1 
••••• G2·········· 
• BIn' NMALL- CBA2 • ._e_ *_. _._._ .. _._ .. 
• IF SOURCB II. • 
• ruMC, CBECII: P'OR' 
'UGM OF V1.LUI -................. 

1 
• •• ··R2·········· · . • SAn OBJBCT • 
• 11000I.I: LOCATIOR. 
• COUNTBR • · . .................. 

.. '" 1 
:~·lli~~~~U~: ....... \ ........ . 
• ALLOC ex S'l'G, t_-__ _ 

:ms~ftSBtfti : ..... , .......... . 

GO)81 .·.·.11.3.········· :~~_ :~.!l'!~:i~~:: 
-->. ALLOCATE ADOR • 

r :'"0" ~~b:/!I!~: ................. 
1 . .. ·.B)·········· • TURN ON P'LAG • 

:RF.~~.;~~Ji~T : 
• "OOUI.!: LOC • 
• 1.:0 Uiifi R • ................. 

1 .·.·.C)·········· • O!TM PR&811fT • 'SIZ! BASE TII.BLI:· 
• A.DD 5 GROUPS TO' 
: SIZllorfSBRn : . ............... . 

1 ·····0)·········· • INDICAr!! • 
• PQSIIfT • 
• ALLOCATION IS • 
• IN OBJECT • 
• MOOOLE • . ............... . 

G.'" j ·····13.·.······· .11/11 TilL AL-CLA2' .-.-.-.-.-.-. -. -. 
:~ ~I~ ~~~: 
:.~~~~.l'~,.~~l'.: 

1 .···.F3·········· · . • I NCIlBASE • 
'LOCATIO" COONT • 
.BY ZQIJIV SIZ! • · . ................. 

.om 1 ... ··G)··· .. ••••·· • BLD IU) I18-CifA2 • 
.-~-.-<!o-.-• .,.,.e-.-. 
• BOlLO BASE • 
• TABLa ENTRIES • 
• IRDICATIlO • 
••••••• $ ......... . 

... " 1 .. ···B)··.·.····· .pUP .a.8'l'-CQA2' .-.-.-.-.-.-.-.-. 
• ALLOC lIAIIE- • 
• LIST 'l'8l. lDO • 
:ffl~~.~!~F..: 

.. ," 1 ••••• J) •••••••••• 
.SCAUUI ALL COAl' .-.-.-.-.-.-.-.-. .. ALL ALLOC • 
• SCALAaS UD • 
• RBG'O M8BS • ................. L __________ _ 

r-- --- -- -- -~ 

I
GOIl2! ••• II".......... GO"2~ ••• II.., ......... . 

.URII.Y II.LL CN"2 • .GRL SPG IlL-COA2' ._e_e_ ._e_._ ._._. .-1-' _e_._ l1li_'_ '.-' 

."LLQCAT! ARRAYS.-------- >. ADO BASES FDf( • 
• II.NO ADO IH:O'D • • SUBPROGRAM • 
• BAS~S • • ADo.., t':~-)~i to.S • .................. . ............... . 

T8! ROUTINES 
Co\LLlD IN PASS 
1 DETZRNINE 
THI NII!IUI!R OF 
BAS! Tll.BLI!: 
DTRUS 
~iU~:~O 
OBJECT MOOULE 
DATA. AS 
WELL AS PER
fORMI"G SOME 
INITIAL 
ALLOCII.TION 

GO"" 1 ·····c':J······ .. ··· .s PG ARG O\L- CP~2. .-.-.-.-.-.-.- .... .1 A.LLOCATf' .~'l'"" .• 
:REMnib ~~~E<; : . ............... . 

..... 1 
·····D~····· ..... .LIT CNS IlL-CR"" .-.-.-.-.-.- .-.-. 
• ALLOC Ll fERAL • 
• CONSTIlHr<; 1l0D • 

:~~;~;. :~t~! ~~~.: 

I 

GOIllle, 1. ····.E..,··· ...... . 
.FORMAr II.LL C5""O 
*-e-._e_e_e_e_e_ • 
• o\LLOC F:>R'IlIr • 
: R~T~6Sflll~~~ : • ••• 2 •••••••••••• 

1 ·····rS····.····· .RESTORE OBr !too. 
'LOC CNTEH OEf'" • 
.TRUE SIZE BIISE. • 
.TABL!, END PIlSg. 
• 1 • . ............... . 

r--. ---------------__I 

..... G".~........ .· ... nS·········· 'OEBUG ALL-CXA2 • ·ASCLR/SPRG-CII.II] • 

._._._._._ .-I!o-I!I-. "'- "'-.-.- e- e- e- e-" 
• QRJ( INIT II.NO .-------->.ENTER MIIMES ON • 
• S08C!lIt. • BCD R::lLL • 
• VARIABLES • • ................. . ............... ~ 

.... , •• m 1 ..... B'.......... ·.· .. u"'··· ." •.... 
'GBL SPa AI. CUA2' .8/B TBL IlL-:::LA2· e-.-e-. -e-e- .-e-. .- .-e_ ,- .- e-'-'-' 
• ALLOC SUBRTN .<--------.ALLOC SAVE lUtEII· 
.ADDR PRINT MAP • • BASE rilL /lMO • * PUNCB !SOS' • BRANCR l'ABLE • ................. . ............... -

•• m 1 G'''' ... ".J,.......... . .... J"' •••••••••• 
:~:_~~_~~_~!~~: :~~~~.~.:~~t: 
• ALLOCATE .-------- >. COaRFCT II.LL~C • 
.UGlIMB1n' LISTS • 'EQUIV OAf" II.NO • 
• •• PRINT .. IlP • ................. . ............... . 

Sect.ion 2: 

I .... ItS········· 
: CHART O~2 : · . ............... 

Compiler Operation 75 



Chart 06. 

76 

PHASE 2 - ALLOCATE (Part 2 of 2) 

.... 
'06 • 
: 82"-1 

GO];;" • ·····.2·········· 'SCALAIl ALL CtU.l' . -.-.-.-.-.-.-.-. 
·CORRECT SCALAR • 
: ~AIDN, : ................. 

1 
·····C2· •••• •• ••• 
.URAY ALL CMA2 • .-.-.-.-.-.-.-.-. 
• COJUtECT AARA Y • 
• ALLOCATION, • 
• PRINT MAP • ................. 

GO.., 1 ·····02·········· 'BLD NllLST-CVJ.2 • • -._ .-e-e_ e-.- e-. 
• COIISTR AIIO PCB • 
• TXT COS roR • 
• MAMELIST ':'BL • ................. 

G.... 1 ·····1!!2·········· 'LIT CRS AL-CRA2' . -.-.-.-.-.-.-.-. 
• ALLOC LITI!!JtAL • 
'CORS AND PUNCH • 
• TXT CAROS • ................. 

G.... 1 · ... ·,.2···.·.···· .P'OItIUlT ALL CSA2' . -.-.-.-.-.-.-.-. 
• ALLOCATB .oRMT. 
: SmSl:Jg:c. : ................. . l ___________________________________ _ 

-----------1 
·····8'·········· .RU.EASE ROLLS, • 
• OBTAIN • 
• OOUBI.EWOIIO • 
• BOUNDARY,.OR • 
• BASES • . ............... . 

1 ·····c,·········· 'CALCULATE BASE • 
'AIm OISPLACElUlTt 
• FOR TEMP Aim • 
• CONST ROLLS • · . . ............... . 

GO'" 1 ·····011·········· 'BLD AD BS-CWA2 • 
e_e_e_e_e_e_e_e,. • 
• BUlLD 3 BASES • 
• FOR TEMP 11..,0 • 
• CONST AREA • . ............... . 

1 ...• ·E'··· ... ···· • • 
• PREPARE ,.011. • 
• OIeI,.y PIIASE • · . · . ··· .. · .. r· .... · 
.... ,., ........ . · . • JBYU' .. • • · . ............... 

RELEASE 
ROLLS 



Chart ell. MOVF RLD ~AMES TO DAT~ VAR ROLL 

('0';43 

.. ··Al········· • ALPHA • 
LBL AND L 
SP~()(~S • 

••••••••• 4. ••••• 

1 .... *81····· .. ···· • RELEASE DATA • 

: ~~Rp~~~~tRf,~ : 
• NeW (;ROUP ON • 
~ UP.TA \JAR HOLL. '" ................ . 

j 
••• ~*Cl t't' ... ****** 
• ,;AVE POI NTER • 
• TO L.ABELS. 

SET UP 
POI NTER 

• 10 LIlL ROLL. ................ . 
.... 1 · . 

• fJl ._) · . ... . . 
D1 ' .. ALPHA L SPRaG · ····02···· ..... . • SAVE DATA VAR • 
ENTIRE 

LIlL ROLL • ::~ _____ >:RO~~I~.nr~~ AS: 
• . PROC E~;~ ED. • . .. .. .' 

• N() 

I 
••••• F:l •••••••••• · . • h(:VE flEX'!' LABEL. 
• T(l • 
• Il{\'j!\ '11 Id-l. H( )LL • · . ................ . 

1 .... · . 
• lJl • · . 

• STATEME~ • 
• FUNCTIONS • ..... ........... . 

1 · ····E2·········· · . 
• SET UP 
: POI NTER ROLL 

1 . ... · . 
• r,4 • · . ... . 

····A)········· • ALPHA • 
• SCALAR ARRA Y • 

~ ... ~~~.~~~~~ ... ~ 

I .•. ··B ) .•.....•.. 
• SAVE • 
• DATA VAR ROLL • 
• POI NTER AS • 
• POINTF:R TO 
• SCALARS ................. 

1 .... ·C)·········· · . 
• SET UP 

POINTER Tv • 
SCALAR R(JLL • · . .......... ...... . 

1 ·····03·········· .A/O VAR RL-CAF4. 
• -. -. -. - +-. -.-.- • 
• MOVE • • SCALAR NAMES TO. 
• OATA VAR ROLLS • ........... ..... . 

1 ·····E3·········· · . • SAVE DATA VAR • 
"ROLL POINTER TO. 
• ARRAYS • · . . ............... . 

I 
• ••• *F3*··· •••••• · . SET UP 

PO:NTER TO 
: ARRAY ROLL ................. 

j 
··.··GJ ......... . 
• AlD VP-.R RL-Cl'.F"* .-.-.-.-.-.-.-.-. 
• MOVE • 
• ARRAY NAMES TO • 
• DATA VAF ROLL • ................. 

I ·····H3···.······ • SAVE O.a.TA VAR • 
• ROLL POINTER AS. 
• POINTER TO • 
• GLOBAL 
• SUBPROGRAM • ...... .......... . 

I ·····J3·········· · . • SET UP POINTER • 
• TO GLOBAL • 

SPROG ROLL • · . ...... ........... . 
1 .... · . 

• B4 • · . .... 

. ... · . 
• B4 • · . .... 
1 

·····b~·········· .A/O VAR RL-CAF4. .-.-.-.-t-.-.-.-. 
.MOVE SUBPROGRAM. 
* !'!l'wl1ES TO s
• DATA VAR ROLL • .. ...... 1" ..... . 

· ····C4·· .. ·· ... . • SAVE DATA VAR • 
.ROLL POINTER AS. 
• P(J1NTEl< TO • 
• USED LI BRARY • 
• NAMES • . ............... . 

I 
: •••• 0 ........... : 

.SET UP POINTER • 
• TO USED LIB • 
• FUNCTION ROLL • · . . ............... . 

t .... 
• • 
• G4 • · . . ... 

····F4········· • ALPHA TO • 
: DATA VAR ROLL : ............... 
:'::';,1 

•••• v ... 
G4 •• .... ····GS··· ...•.. 

•• eNTIRE •• YES. • 
•• ROLL • ,.--------). RETURN • 

•• PROCESSED.· • .. .. . ............. . .. . . 
• N" 

1 
·····H~·········· • MOVE NEXT NAME • 
• (8 BYTES) • 
• TO • 
• DATA VAR ROLL • · . . ............... . 

i .... · . 
• G4 • · . .... 

Section 2: Compiler operation 77 



chart CB. PREPARE EQUIVALENCE DATA 

G0362 . .. 
A2 •• .... Al......... .* *. • ••• A3 .•.• · •••• 

PREP fOUIV. .* *. NO. • 
AND PRINT *----->*.EOUlvALENCE •• ---->. RETURN • 

• •••• ~~~~~;****. * * ••• DATA ••• • •••••••••••••••• 

78 

•• • * 
• YES 

• •••• • I 

• B2 .-> I 
• • I 

v ·····e2·····.···· • CALCULATE • 
OFFSET FOR 

• EQUI VALENCE • 
• VARIABLE AND • 
• RECORD • •••.............. 

I 
V .e. 

C2 *. • •••• e3 •••••••••• 
• * *. • • 

•• IIAD •• YES e * 
e. DEFINITION .*---->*IUCOItC' NAME AS • 

•• •• e ERItOIt * 
*..* • • * •• * . • •••••••••••••••• 

i NO I 
I<-------~· 
V .e. 

02 * • 
• - ALL * • 

• - DATA *. NO 
•• PROCESSED •• 1 .. .-*. • • 

•• • * V 
• YES •••• 

I 
V ·····E2·········· · . SET UP • 

HEADIIoIG FOR 
ERROR LIST 

I 
V ...... F2··········· PRINT LIST OF 

• EQUIVALENCE • 
• DEF ERItORS. 

I 
I 
V ····G2········· · . RETURN 

e • 
• B2 • . . 

PRINT 
ERROR SYMBOL 



Chart CC. ALLOCATE BLOCK DATA 

G0361 

. ···Al········· . . 
• PR~O~tLg~!~ION. ............... 

·····.2·········· .CIII ALL'OUT-C I A2 • 
*_*_*_*_*_a_*_*_* 

=~>= Ai-LQ~ ALL CQ", .. 
.STRG.PRNT ERRS •• 
• IIIAPS PNCH ESOS • . ............... . 

I 
V ······82··········· 

PUNCH 
DFM.a.1N'Ur. 

• ESDS iii-ANY. 

I 
V 

·····C2···.·· •• •• 
.SCALAR ALL CIIIA2 • 
• -*-*-*-.-*-.-.. -• 
• ALLOC SCALARS •• 
• AOO RE~UJREO • 
• BASES • ................. 

I 
V ·····02·········· :~:~!~.~~~.-;~!~: 

.ALLOCA TE ARRAYS. 
• AND • : .. :~~:.~:!~: ... : 

I 
y ·····!2·········· · . • "LIP • 

• !OUI VAL!NCE • 
• ROLL • ................. 
:*;:·:->1 
•••• v 

'36102 ••• 
F2 *. • •••• Fl •••••••• • • 

• * t NFO •• • • 
•• GROUP ON •• YES • RECORD 

•• EQVIVALENCF. •• ------->. NAIIIE + ERROR 
•• ROLL.. • TYPE 
*..* • * •• * ••••••••••••••••• i NO .L. 

v • • 
'36101 <02'.'''_ : F2 : 

.- *. 
•• IIIORE •• YES. • 

•• OATA ON ROLL •• -->. F2 • 
•• .* •• 

*. .-
a •• * 

• NO 

I 
I 
V ······J2··········· 

PRINT 
BLOCK DATA 

ERRORS ............. 
I 
v ..... 

·06 • 
• B4· 

• • RELEASE 
ROLLS 

BECAVSE 
ALL EOUIV 
DATA IIIUST 
BE IN COIIIIIION 

Section 2: Compiler Operation 79 



Chart CD. 

80 

PREPROCESS DUMMY DIMENSIONS 

(,0365 

.. ··,.2*········ " PREP OMY DIM " 
" AND PRINT • · .... ~~:~:~ ..... .. 

I 

I 
I 

I 
V ·····B2·········· · . 

• INITIALIZE • 
POINTER TO 
APPRO ROLL ................. 

I 
• •••• • I 

: (2 :->1 
•••• v 

CHECK 
OMY DIMENSION 

,036601 .w. GOJ67 ._. 
(2 •• Cl w. 

· . 
• C4 • · . 

I 
I 

G041S V ······C.··········· .. .. .... ····C5········· ... ALL ... YES ... ANY •• NO .... .. 

•• •• P~~~:~~eo •• ··------->·· •. g~~:~~S •••• -------> .PRINT ERRORS ------->: RETURN 

*..* w.._ 
a. •• .. •• _ 

• NO • YES 

I : .::. :-> I 
V •••• V 

••• '36702 ••• '36703 
02 ,... 03 ... .. ••• *0 ••••••••••• 

... NEXT ... ...... .. .. 
• ·ARRAY HAVE •• NO •• E ... O •• YES • RECQRO MARKER • 

•• ~UMMY •• --, •• OF A DUMMY •• ----->. ON NAMEL 1ST - • 
• 0!~E ... SI0~~.. I •.•. LlST •••• : ITEMS ROLL : 

.... * V * •• * ••••••••••••••••• .. .. 
i YES • •••• • i NO • ••••• I • ;)3 • 

I : (,2 : I • H 0_> I " 
~ I • ••••• ~ I YES .0. V '36704 ••• '36705 ••• 

£2 ... • •••• E3.......... E4 ... E5 *. 
.• *. .. CLASSIFY NXT .. .* ANY w. .* w. 

... ARRAY ... YES .. OMY IF ANY" .-MORE ARRAYS •• NO .* MORE •• 
*. A DUMMY OR .*---->* .1TH OMY OJM .. -.WITH DMY DIM •• ---->*. DUMMY .* 

".INCOMMON •• " PNTR TO ARRAY. •• IN THIS .* *. LISTS •• 
w..* .. ON ERROR ROLL" •• LIST .* w..* ... ... ................. .. .. . .. . 

• NO I 0 YES * NO 
I 
I 

I 
V .· ... FZ·········· o • 

• RECORD • 
o ARRAY NAME AS • 
o ERROR • 

I 
• •••• • I 
• (,2 .-> I 
o • I 

• 36602 V ·····G2·········· o • 
• PREPARE • 
• TO PROCESS NEXTo 
o ARRAY • · . ................. 

.. .. 
o • 

: (2 : 

I I I 
V I V . .... . . ..... 

• 03 • V • C4 • 
•• •• ••• F •••••• ••••• •• 

o CHECK oMY DIM • 
.N"T ARRAY-MUST 0 
.aE oMY I N SAME • 
oLIST OR I ... COM-. 

: .:~~.:~~.~:: ;~.: 
I 
I 
V .... · . 

• E •• · .. 



chart CE. CHECK FOR UNCLOSED DO LOOPS 

G0371 

····A2········· • PROCESS • 
00 LOUP~ 

.................. 

I 
I 
I 
V 

·····62·········· · . • FLIP THE • 
• DO LOOPS OPEN • 
• ROLL • . ................. 
•••• I 

: C2 :->1 
•••• v 

1037101 ••• 1037102 
C2 •• ·····C3· •••• • ••• • 

•• DATA •• • • 
•• ON THE •• NO .SET UP HEADING • 

•• 00 LOOPS OPEN •• -------->. FOR DO LOOPS 
•• ROLL.. • ERROR LIST ... . .. ... . .. 

• YES 

I 
V 

·····OZ·········· · . • MOVE BAD • 
.LABEL TO ERROR • 
• LBL ROLL · ................. 

I 
I 
I 
V ... 

E2 •• 
•• UNOE- •• 

•• FINEO MARK •• YES 
•• ON LBL ROLL •• , 

*. .* ... . .. 
... ... v 

• NO •••• 

I 
I 

I 
V 

·····F2·········· · . • SET UNCLOSED • 
• 00 MARK IN LBL • 
• ROLL (,ROUP • · . ................. 

I 

I 
V · . 

• C2 • · . 

· . 
• cz • · . .... 

. ............... . 
I 
I 
V 

······03··········· 
PRINT 

00 ERROR LIST 

............. 

I 
I 
I 
I 
V 

····E3········· . . 
RETURN 

PRINT ERROR LBL 
ROLL 

Section 2: Compiler Operation 81 



chart CF. CONSTRUCT BRANCH TABLE ROLL 

G0372 

····A2········· OPROCESS LBL ANOO 
o LOCAL SPROG • · ............... 

I 
I 

.... · -.. B4 .. · . .... 
I 

v 1037206 V ·····e2·········· · . FLI P • 
• THE LBL ROLL 

· ................. 
:"::. :->1 .... \' 

1037201 ••• 
C2 *. .* ... • * DATA w. NO 

•• ON THE LBL •• , 
w. ROLL .* a. ._ 

a •• _ V 

i '" :::::: 
V .····02·········· · . ° ",eVE • 

• LABEL TO WORK • 
• ROLL • ................. 

1 
V .0. 

E2 o. ... ... 1037202 ·····E3·········· · . •• LABEL •• YES • SET FIRST 1/2 • 
o. DEFINED •• --->. BYTE OF LABEL. 

•• .0 • GROUP TO ZERO • ... ... .. . 
* •• * ••••••••••••••••• 

• NO I 

1 I 

·····8.·········· · -o COpy -
- TEMP ROLL TO 
- LBL ROLL 

-. ............... . 
I 
V 

: •••• C4 ••••••••• : 

"SET UP HfAOrl'tG • 
• ~OR UNOfF I NEO • 
: L .... ELS : 

.....•..•.•...... 

I 
V ······0.··········· 

PRINT 
UNoEF INEO 

• LABEL LIST . ........... . 
I 
I 
I 
V ·····E.·········· o • 

" FL IP • 
OTtiE LOCAL SPRGGo 
- ROLL • 
" . ................. 
:-::. :->1 
•••• V 

PRI NT ERROR LBL 
ROLL 

V 1037207 ••• IOJ720e 

82 

..... F2·········· 
• CLEAR • 
• FIRST BYTE OF • 
o LABEL • 
o GROUP-"'OVE TO • 

:;::~:.~~~.:~;~.: 

.. KJ • 
o 0 

THE TAG 
FIELD OF THE 
POINTER STILL 
lNOICATES THE 
TYPE OF LABEL 

1 
V . .. 

G3 e. 
.- *. 

.- JUMP *. NO 
•• TARGET LABEL •• , 

*. .-a. ._ 

* •• * V 
.. YES •••• 

• ...... I : K3 : 

: .::. :->\ .. 
1037203 V ·····H3·········· • MAKE NEW BRANCH. 

• TAIILE ROLL • 
ENTRY AND • 

RETURN PTR 
• TO IT ................. 

I 
V ·····J3·········· • REPLACE • 

• LABEL GROuP • 
.WITH POINTER TO. 
: BRANCH TABLE : ................. 
.... I · . 

• K3 .-> · . .... 
1037205 V ·····K3·········· · . • MOVE • 

• GROUP TO TEMP ., 
• ROLL • · . ................. .: .. 

• 0 

° C2 • 
o 0 .... 

F. •• • •••• ~5 •••••••••• 
." DATA ". " COpy THE • 

." ON THE o. NO • COMMON OATA 0 
•• LOCAL SPRaG .0 _______ >. TEMP ROLL TO " 

•• ROLL." .notE LOCAL SPROG. ...* . ROLL • .. .. . ............... . 
• YEr. I 
I I 
I I 
V I . .... G........... v · · ·.··GS········· MOVE NEXT • 0 

• GROuP TO • RETURN " 
: CENTRAL AREA ••••••••••••••• 

I 
V .................... 

'MAKE NEW BRANCH
• TABLE ROLL • 

ENTRY ANO 
RETURN PTR 

: ••••• !~.!! ••••• : 

I 
V 

: •••• J •••••••••• : 

• PUT POINTER • 
.ON COMMON DATA. 
• TEMP ROLL • . . ............... . 

I 
V .... · . • F_ -

" " 



Chart CG. ALLOCATE HEADING AND PUNCH ESD CARDS 

G0374 

.···A2········· 
• BUILD • 

PROGRAM ESO • . ............... 

V ·····82·········· · . 
INITIALIZE 

v ,. , 
02 ... • •••• 03.·.·· ...... 

... 0 A T A .. • .. SE T UP • 
" ON ENTRY ., NO • PROGRAMMER • 

., NAMES ,.---->.SPECIFIEO NAME • 
... ROLL.* .. 1 N CENTRAL • 
e..* .. • .... * ••••••••••••••••• 

• YES I 
I I I · .~ .. · 

.03!:~l.E2.~........ : (,2 : · . .FLIP THE ENTRY. 
'NAMES ROLL AND • 
"MOVE ONE GROUP " 

• OFF " ................. 
I 
I 
V .. ···F2·········· 

• SAVE " 
'GROUP ON COMMON" 
'NAME TEMP ROLL.' 
• ADO BLANKS TO " 

: ..... ~::; ..... ,.: 
I 

• "I 
: G2 :->1 
•••• I 

'037402 V .. ···GZ·········· · . ~ rUT J $YMSOL 
'IN FIRST BLANK' 
• OF NAME · 

I 

I 
V ... ··H2·········· · . 

• PUT PROGRAM • 
• NAME I N PUNCH 0 

• BUFFER 
o 

I 

I 
v 

•••••• J2 .... •• ..... •• .. •• 

PUNCH PROGR AM 
NAME 

1 
v .... 

o • 
.. 84 • . " 

PUNCH £50 

PUN(l-1 I<[MA INING 
E SD 

. . 
.. S4 • 

" . 
I 
V ·····B4·········· · . 

• SET .. 
• UP FOR LD ESD • · . ................. 

I 

I 
V ·· .. ·~·C4~···· .. ·· .. · .. 

PUNCH 
PROGRAM NAME 

• AS LO F:SD 

I 
I 

I 
V .. ···04·········· .. A.DO .. 

.. LENGTH OF 
• INITIAL PROG • 
'CODE TO PROGRAM' 

: ..... ~~~:~ ..... : 
• •••• • I 
: E4 :->1 
•••• v 

• 037405 ,', ,037406 
E4 ••••• ES •••••••••• 

.* ... .. COpy 
" DAT A LEFT ". NO • (aMMO'" NAME 

'. ON [NTRY • ,,--->. TEMP ROLL TO " 
'. NAMr 5 "ENTRY NA"E ROLL" .. ... .. .. ... .. 

.. fE 5 
I 

I 
I 
V ····*F4·· .•..•..• 

• MOVE GROUP TO " 
CE",TRAL ANa 
COMMON NAME 

TEMP ROLL .................... 
I 

I 
I 
I 
I 
V .... * *G4·········· _ AOO v 

GLAi"K S IG 
-NAME. ADO fNTRY· 
• CCDE TO PROG 
.. BREAK t 
..................... ,i 

••• ···H4 •••..•..... 
PUT 

ESC> IN 
BUFFER-PUNCH 

" IF COMPLfTE " 
CARO ............. 

• E 4 .. 
" . 

Section 2: 

I 
I 
I 

I 
'V . ..... F5····· ..... » 

PUN( H ANY 
REMAINING E5D 

• (ARDS 

I 
I 
I 
I 
I 
I 

~ 
• ... ·(,S·· ............ • 

RETURN 

Compiler Operation 83 



Chart CH. 

84 

CHECK ASSIGNMENT OF FUNCTION VALUE 

G0376 

· ····.2········· . 
ENTRY N ..... E • 

•• :~';~~~!!~~ ••• 

I 
v ... 

B2 •• 

.* •• ····83········· •• SOURCE •• NO. • .0:. SUBPROGR ... ~ ••• ---->: RETURN : 

w. •• • •••••••••••••• .. .. 
• YES 

I 
v .·0 

(2 w • 
••• * •••• YES ••••• C3 •••••••••• 

-.A SIJt:tRQUTINE .*---->. RETURN 
•• .* • 

w. •• • •••••••••••••• 
•• • * 

j"" 
V ·····02·········· · . 

• FLIP • 
"THE ENTRY N ... MES. 
" ROLL • · ... ............. . 
:·::·:->1 
•••• v 

'037601 ••• 
£2 w • . - .. 

•• O ... T ... ON •• NO 
•• THE E ... TRY 0., 

-N ... M£.S ~OLL •• 
*. .-

a •• * V i ,.. :"::': 
V 

: •••• F 2 ••••••••• : 

-"'OVE ... EXT GROUP. 
- TO THE CO"'MO'" " 
:N ... "'E TE"'P ROLL : ................. . . 

1 
V 

0" 0 

: G3 : .... 
I 

'037602 V 
G2 *. .- .. : •••• G3 ••••••••• : 

• " SC ... L ... R -. YES - SET "'OOE " 
*. WITH S ... ME .----->" OF SC ... L ... R IN " 

-. N"''''E.- "POINTER" 
*. .* • •• • * ••••••••••••••••• 

- NO I 

I I 
V V 

: •••• HZ ••••••••• : : •••• HJ ••••••••• : 

- REGISTER N ... ME " " PUT POUlTER • 
" OF ENTRY FOR " *0101 COMMON N ... ME • 
: ERROR I.. I ST • TEMP ROLL • 

I 
I 
I 
V ·····J2·········· • ... 00 -

• SC"'L ... R ROLL " 
"GROuP FOR ENTRY" 
" N ..... E - OEF I HE " - " ................. 

I 
V .... 

* -• G3 • 

" . 

I 
V 

:~ ••• J3 ••••••••• : 

- "'00 SC"'L ... R * 
.TD EOUIV ... LENCE " 
" ROLL " 

I 
V . ... 

* • 
" [2 " 

" " 

" " 
- B4 " 
" " 

I 
'037603 V ·····a.·········· " COPY THE -

" COMMON " 
-N ... ME TEMP ROLL " 
• TO THE ENTRY -

: .. :::~~.:~~~ ... : 
I 
V 

: •••• c •••••••••• : 

" PUT ... "' ... RKER 
• SYMBOL ON 
" EOUI V"'LENCE 
" ROLL • . ............... . 

I 
V ·····0.·········· " " "SET UP H£ ... OING " 

" FOR FUNCTION • 
: ERROR LI ST • ................. 

I 
V ······E.··········· 

PAINT 
FUNCTION 

• ERAOR LIST ............. 

V ···.F.····· .... 
" -RETURN -

... 1..1.. ENTRY N ... MES 
TO ... FUNCTION 

... RE 
EQUIVALENCED 

PRINT 
EAROR SYMBOL 

ROLL 



Chart CI. 

Al J..ll AOV ON 
( O"'MON 

Alltl('"UN 
~ tH l r N(~ t l It T [ S 

THI < 

COMMON ALLOCATION 

G0377 

···· ... 2········· o C 0"'''' ON • 
ALLOCATION 

.... ;;~. ~~!~~! ••• 
I 

. ... · • B4 • · . 
I 
I 

I 
I 
I 
v ,037706 V .... *B2·········· o • 

• INITIALIZE • 
FOR CO"''''ON 
ALl OCA T I nN ................. 

I 
I 

I 
I 
v .e. '037709 C2 *. • •• ·.C3········ ... · .* *. • CLEAR • 

.' ANY NO • CONTROL <; AND 
=-. SLeCK I"A~[S • :-----:;-,.. "-GLi.....:; tuJ.,( 

'. ON ROLL .' • ALLOCATION 
*. •• .. Of COMMON • .. .. .. ............... . 

• YES 
I 
I 

I 
I 

·····a4 ......... . · . 
'COPY ALL BLeCK • 
'NA"'ES AND DATA' 
_RACK FROM TFMP • ...... ~~~~~ ..... : 

I 
I 

I 
I 
v 

•••• ·C4 .. ••• .... ••• 
• ALLOCATE ALL • 
• Eoul VAL[NCE 
"DATA ;:(EFEM:;;(i'..,G ~ 

• TO (O~MON • 
.. BLOCK • . ................ . 

" 10-n7l1 

•••• *02·· .. ••••••• · . 
MU"[ N~ XT 

*NAME TO COMMON. 
• AHEA ROLL • 

•.•• I 
: (2 :->1 
• • I •••• V 

*011701 .'. 
[2 '. . . . . 

. .. *OJ········· 
nfTuRN .. 

~ ... . 
• r:) .--, 

• • I 
V 

,037705 .'. 
f] ... . . ' . 

• .. E ~o OF ". YF S • • MORE •• NO 
•• OATA FOR •• ----> •• HLOCf( ~API4fS .*-, 

•• BLOCK •• •• ON HOLL •• I 
•• •• •••• I 

. . 

* •• ' 

F2 

I 
I 
I 
I 

" • <. 

NU 

. . . . 
•• HEX T •• NO 

•• vAR I ABLE tN •• ----, 
'. ANOTHfR .' I 

o .ALOCK.' I 
' •• ~f S I 
I I , 

i 
I 
v 

•••• *L
t 

_ ••••• * ••• 
• 0 

I 
"f CURD I 

I *NAME: A C
, COMMON -

• tRkOA • 
I 
I 

I I 
I _____ J r 

'03770<' v 
f •••• H2 •••••••••• 

ALLnCATE 
<'TORAG[ FOR 

• V At:( I A~l r. RF. - • 
• COi-lO ON GEN'L • 
*ALLCCATIO"'4 ROLL................. 

• [.' * 

*. .• v 
YE 5 .... · . 

• 64 • · . .... 
• <. 

F 3 •• 
•• Nt X T •• 

• < NAM[ 5A"'E e. YE 5 
-.AS LAST NAME •• ---, 

<.ALLOCATED.· I 
•• •• I 

•• •• v 
• NO •••• . I 
I 
I 
I 
I 

• E 2 • · . 
'·1 J 7 70 3 " 

*. _. *e 3* * •••••••• · . 
copy BLOCK • 

• NA",,[ AND DATA. 
• T(] Tt: MP ROl.L • ................. 

I 
I 
v .... . . 

• E] • 

· .. ·• .. ·04··· .. ······ .. 
P')NCH 

f SU CARD fLR 
• BLOCK 

.' . 
E_ •• .. . . 

• * •• NO 
•• MAP OPT ION • *--, 

•• •• I .. . . 
•• • * 

o YE 5 
I 
I 

I 
I 
v ..... *F4······ ..... 

PRINT 
H[ADING FLR 

-MAP OF t:iLOt.K • 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 1 < _____ J 

I 
" •••• ·GA •••••••••• 

• COPY (,rhl'l * 
ALLOCA T ION • 

.ROLL Tf) COMMON • 
• ALLOI..~AT ION • 
• ~OLL • ........... ..... . 

. .... ·H.··········· 
P;<INT MAP 

I 
I 

I 
I 
I 
v 

••••• *J4 ••••••••••• 

PRI NT 
ERROR(') FOR 

~l.OCK 

•••• )(4 •••••••• • 

LOl'I'ON • 
'ALLOCATION AND < 
• OUTPVT • ........... _ ... 

Section 2: 

'-TU"N TO 
PRf ''':ESS N(.a:T 
COM.~ON BL OU: 

compiler Operation 8~ 



Chart CJt. 

EOUIV 
ALLOCATION 

INTEGRATE 

PRESENCE ON 
GENL ALLOC 
ROLL INOICATES 
THIS 

86 

EQUrvALENCE DATA ALLOCATION 

GOlel ·····A3·········· •••• "2......... • (L!AA • 
- EOUI V. - - OeJECT 
- ALLOCATION ----->- MODULE -.. ~:!~!.;::~:... : Lg~~~~~= • 
.... · -

................. 
: 82 :--, < __________ -J 

•••• V 
GOlll2 .-. 

82 •• 
• - DATA e. 

•• ON •• NO 
'. EOUI VALENCE •• ----, 

-. ROLL.- I 
*. .* I 

••• * V 
• YES •••• 

I --
\ : .::. : 
V ·····C2·········· 

• "LIP • 
• EOUI VALENCE 
• ROLL AND 

INITIALIZE ................. 
- • I 
: 02 :->\ 
•••• V 

'031150 I • -. 
02 *. .. .. 

.- DATA -. NO 
•• TO PROCESS ON •• ----, 

•• *. ROLL ••• * I 
* •• * V 

• YES •••• 

I 
V 

- -• 84 • - . 
.-. . .. 

E2 -. El -. 
.- *. •• e. 

•• ENTRY •• YES •• CONFLICT •• NO 

-. _. A~~~~:~ED •••• ----> •. :!TH ~:~SEN!- •• I 
.. .. *..-

a •• * * •• * 
• NO • YES 

I 
,Ol850l V ..... F2·········· 

- ALLOCATE • 
• A8SOLUTE ADOR -
- RECORD ON COEN -
• ALLOC ROLL • · ................. 

I 
V 

: •••• G2 ••••••••• : 

• INCREMENT • 
.PTR TO GET NEXT. 
: GROUP • ................. 

I 
.~ .. · . 

• 02 -· . 

I 
V 

••••• F 3 •••••••••• - -- RECORD -
-NAME FOR ERROR -
- LIST -- -. ............... . 

\ 
1< 
\ 

Illl902 V ·····G3·········· . . 
- PRUNE • 
:ENTRY FROM WORK: 

I 
.~ .. 

- -: 02 : 

- . • 8 •• - -
I 

GOlll4 V ·····84······ .... 
- ALLOCATE ALL -
• SETS WITH -
-NAMES LISTED ON
.GEN ALLOC. ROLL • 
- + MOVE INFC. -................. 

I 

I 
I 
I 
V ·····E.·········· - -INCREMENT -

.PROJECT MODULE -
• PROCORAM 8REAK • . -................. 

I 

I 
V 

••• •• F ••••••••••• - . 
.COPY I HFO GEHL -
• ALLOC ROLL TO • 
- SOURCE ROLL • 

I 
V 

·····G.·········· • MAKE FINAL • 
.ALLOC AND MOVE • 
• INFO TO EOUIV • 
.ALLOe ROLL FROM
- GEN ALLOC • . ............... . 

I 
V .... . . 

: lSI : 

. . 
• C~ • . . 

I 
I 
I 
V ·····es·········· 

• SAVE LOCATION. 
- CNTR AS FIRST. 
• ADDRESS AFTER • 
: EOUIV DATA : ................. 

I 
I 
I 
V ······05··········· 

PRI NT 
EQUIV 

ERRORS . 

····E5····· .... . . 
RE TURN 



chart CL. SAVE AREA, BASE AND BRANCH TABLE ALLOCATION 

(.1437 

····A2········· 
• BASE AND • 
• BRANCH TABLE 

· •• !;~~~: !!~~ ••• 

I 
I 
V ·····S2·········· .SAVE BASE TBL •• 

• PTR AND 
• DISPLACEMENT 
• FOR START OF 
• SAVE Agr,t. ................. 

I 
v 

••••• r7 •••••••••• · . • INCREASE • 
• PROGRAM BREAK • 
• tn SAVE AREA • 
• S' ZE ................. 

I 
V ·····02·· ....... . 

• SAVE BASE TBL • 
• PT'" AND DISPLA-. 
• CEMENT FOR • 
• START OF BA!>E • 
• TABl.E • ................ .. 

I 
V ·····E2·········· · . • INrREASE • 

• PRiX;RA'" BwE AK • 
• BY BASE TABlf' • 
• SIZE • ......... ....... . 

I 

I 
V 

: •••• F2 ••••••••• : 

• CONSTRuCT • 
• REQUIRED BASE. 
• TABLE ENTRIES. · . ................. 

I 
I 
V ·····G2·········· 

• S4VE BASE T6L • 
itp'TR Di SPL • .:£ ... ' .-
• FOR START OF • 
• BRANCH T ABl E · ................. 

I 
V · .. ··H2······ .... 

*INfREASf PROG •• 
• BRf:AK BY • 
• SIZE 8RANCH * 
• T A8LF AND MAKE • 
• LABEL ENTR I ES • .................. 

I 
V 

: •••• J2· •••••••• : 

• CONSTRUCT • 
• REQUIREO BASE • 
: TABLE ENTRIES: ................. 

Ii .. ····K2········· .. 
* RETURN 

THl S 'I AR I ABLE 
IS USED 
TO HOLD OBJECT 
MODULE ADDRESSES 
BE I NO; ALLOC. 

BUILD 
ADO I T 10NAL 
BASES 

BUILD 
ADDITIONAL 
BASES 

Section 2: compiler Operation 87 



chart CM. ALLOCATE SCALARS 

· . 
• A3 • · . . .... . . 

I • J2 .<-, 
! · · I YES 

G0397 •••••• 2.......... '039701 A3···.. A.···.. AS-·· *. 
• •• ••••••••••••• .: : •• •• ALL •• •• NO ••• * A·· •• NO .* •• • ••• 
:SCALAR ALLOCATE:------->: INITIALIZE :-------> •••• P:~~~;:~D •••• -------> •• ~~MY SCALA~ ••• -------> •• ~~LL BY NAM~ ••• 
••••••••••••••• *..* *..* *..* 

NOTE 1-
THESE aUES T IONS 
SEPARATE 8 AND 
16 BYTE 
VARIABLES 

••••••••••••••••• e •• * _ •• * e •• * 
• YES • YES • NO 

I I 
V V .... . ... · . 

• 02 • · . .... 
· . 
• 02 • · . 

'039706 VSEE NOTE 2 SEE NOTE 2 
: •••• C3 ••••••••• : : •••• C •••••••••• : : •••• CS ••••••••.• : 

• ALLOCATE FULL. • ALLOCATE HALF • • ALLOCATE • 

.... · . 
• WORD SCALARS- .------->. WORD SCALARS- .------->. BYTE SCALARS- • 
• RECORD AND MAP • .RECORD AND MAP • .RECORD AND MAP • · .. .. . ................. ................. . ............... . 

: 02 : .... 
I 

,039707 V 
: •••• 02 ••••••••• : 

• SET • 
• MODE OF NEXT 
• SCALAR . ................. 

1 
V 

•• SEE NOTE 1 '039704 SEE NOTE 2 
E2 *. • •••• E3 •••••••••• 

.* e. • • 
•• •• YES • ALLOCATE • 

•• COMPLEX MODE •• ------->. STORAGE AND • 
•• •• 1\. RECORD. PRINT. 
*..* I. MAP • 

••• ·~O J ........ j ....... . 
I .~ .. 
V • • 

•• SEE NOTE I • K2 • 
F2 *. • • 

• * e. 
•• DOUBLE •• YES 

•• PRECISIOH •• 
a. ,.ooE .-a. ._ 

a •• * 
• NO 

I 
V .•. '039703 

G2 •• 
.* e. 

: •••• G3 ••••••••• : 

•• •• YES • MOVE GROUP TO • 
·.SHORT INTEGER •• ------->. HALF WORD ., 

•• •• • SCALAR ROLL • 
*..* • • 

* •• * ••••••••••••••••• V 
• NO •••• 

I 
V .*. '039702 

H2 •• • •••• H3 •••••••••• 
•••• • * 

.* •• YES • MOVE GROUP • 

· . 
• K~ • · , . .... 

•• SHORT LOGICAL •• ------->.TO BYTE SCALAR *, 
*. .* • ROLL * 
e..* • • ••• * ••••••••••••••••• y 

· .... . *1 NO :.-;:. :. 

: J2 :-> .... 
103970B V 

: •••• J2 ••••••••• : 

• MOVE GROUP TO • 
• FULL WORD • 

SCALAR ROLL ................. 
: .::. :->1 · . .... 

'039705 V ···· ... 2·········· · . • PREPARE • 
• TO PROCESS NEXT. 
: SCALAR : ................. 

J 
V .... · . 

• A3 • · . 

NOTE 2-
IF OUR ING PASS I. 
NO MAP I SPRINTED 
AND ALLOCA T ION IS 
NOT RECORDED FOR 
COMMON ANO EOUI
VALENCE SCALARS • 
INFO IS PICKEO UP 
FROM OTHER ROLLS 

V 
••••• 05 •••••••••• 

RETURN • . ............... 



Chart CN. ALLOCATE ARRAYS 

G040J 

···· ... 2········· • ARRAY • 
ALLOCATE 

I 
I 
V ·····82·········· · . · • INITIALIZE ................. 

:*::·:->1 
•••• v 

,040101 ,., 
C2 •• 

'40104 ······e3··········· .* w. 
•• ALL ... YES 

*. ARRAYS •• ----~ 
.,PROCESSEO,· 

e. • .. 
... • it 

* NO 

I 
v ,- , 

02 -, 
•• HEX T ... 

,- ARRAY IN -, YES 
-,COMMON EQUIV, ,*---, 

-'~~ DUMM~_ ,- I 
w •• it V 

.. NO •••• 

: H2 : I 
_. 

V ·····E2·········· * • 
ALLOCATE 

- STORAGE AND • 
-RECORD LOCATION. - . ................. 

I 
V · ... ·F2·········· 

- ENTER -
- INFO IN ARRAY -
- MAP. PRINT -
- COMPLFTF LINE -- -................. 

I 
V ·····GZ·········· - -• (:ALCULAiE ANO .. 

• RECORD BASE PTR
-AND 01 spun IN -
• CENTRAL -................. 
(::-:->1 
•••• v 

'040102 ,-, 
H2 *. .. . . 

• it W. YES 

*, PASS 1 '-, •• .* 
*. • .. 

... •• v 
.. NO •••• 

: 1(2 : I 
--

v ·····JZ·········· - . · -- REPL ACE GROUP -
- ON ROLL --................. 
· .... .. I 
: K2 :-> 
•••• I 

'040103 V · ... ·kZ·········· - -- PREPARE -
-TO PROCESS NEXT-, 
- ARRAY -- -••••••••••••••••• v .... . -

- C2 -- . 

PRINT 
.ANV P.&QTl.A:' 

LINE -'-
----;,-

····c.········· -

Section 2: Compiler Operation 89 



Chart co. 

90 

ADD BASES FOR SUBPROGRAM ADDRESSES 

····A2········· • PASS 1 GLOBAL • 
• SPROG ALLOCATE • · . ••••••••••••••• 

I 
I 
V 

·····B2·········· • • · • • • 

ALIGN TO 
FULL WORD 
BOUNDARY 

• • • • ................. 

V 

·····C2·········· .DETERMINE BASE • 
• PTR AND • 
• DISPLACF-MENT • 
• FOR PRESENT LOC. 
• • ................. 

I 
I 
V 

·····02·········· • COMPUTE • 
• LENGTH OF • 
• OBJECT MODULE • 
• SUBPROGRAM ADR • · . ................. 

I 
V 

·····E2·········· .COMPUTE LENGTH • 
OF OBJECT • 

MODULE • 
• SUBPROGRAM • 
• ADOR ................. 

I 
I 
V 

.... F2········· · . RETURN • 
• ............... 

BUILD 
ADDITIONAL 
BASES 



Chart CP. ALLOCATE SUBPROGRAM ARGUMENT LISTS 

G0442 

····11.2········· • SPROG ARG. • 
ALLOCATION • 

............... 
I 
I 
v ... 

B2 •• 
.* *. · .. ·B3········· :* ZERO • ~ ~ 

•• ARGUMENTS •• -------->. .. .. 
*. •• 

* •• * 
• NO 

I 
V 

·····C2·········· • • 
• ALIGN TO A • 
• FULL WORD • 
• BOUNDARY • • • ••••••••••••••••• 

V 

·· ... 02·········· • DETERMINE AND • 
• SAVE BASE PTR • 
• AND OISPLACE- • 
• MENT FOR START • 
• OF ARGUMENTS • ••••••••••••••••• 

I 
v 

····.E2·········· • INCREASE • 
• PROGRAM BREAK • 
• BY SIZE OF • 
• ARGUMENT LISTS. 
• • ••••••••••••••••• 

V 

··.·.F2·········· · . • CONSTRUCT • 
• REQUIRED BASE. 
• TABLE ENTRIES. 
• • ................. 

v 
•• •• G2·.······· • • • • 

RETURN 

••••••••••••••• 
• • 

• 
RETURN . ............. . . • 

Section 2: Compiler Operation 91 



Chart CQ. 

92 

PREPARE NAMELIST TABLES 

G0443 

····142········· - -PREP 
HAIIIELIST -............... 

I 

I 
V ·····S2···.······ 

- * - FLIP HAIIIELIST * 
* HAilES AND -
-NAIIIEL I ST ITEMS -

: ..... :~~~~ ..... : 
(::* :->, 
•••• V 

,04"301 .-. '0"4307 
C2 -. • •••• C3 •••••••••• 

• - -. - copy TME -
• * DATA *. NO - COIIIMON DATA • 

*.ON TME NAMES •• ---->- TEMP ROLL TO • 
*. ROLL •• .NAMEL 1ST NAMES • 
*..* • ROLL • 

* •• * ••••••••••••••••• 
• YES I 

'1 I ..... 02.......... V · · ····03·· •. ···•· ALL IGN TO * • 
F\Jl..L WORD • RETURN 
BOUNDARY 

* * ................. 
I 
v ·····f2·········· • MOvE • 

.NAMEL I ST NAIIIES • 
• ROLL GROuP TO • 
• COMMON DATA • 
• TEMP ROLL • ................. 

I 
v . · ... FI·········· *OETERMINE BASE. 

• POINTER AND • 
• 0 I SPl..ACEMENT • 
• FOR PRESENT 

: ••• ~~~~!!~: ••••• 

I 
I 
V ·····G2·········· 

* -• INCREASE • 
* PROGRAM BREAK • 
• BY 16 PUT ZERO * 
• ON WORK * ................. 
• ••••• I 
: H2 :->1 
•••• v 

'04"302 ••• '0"4306 
HZ •• • •••• HJ •••••••••• 

•• •• • MOVE MARkEA • 
• e DATA e. NO • SYMBOL TO * 

*.ON TME ITEMS •• ---->* NAMELIST 
*. ROLL.* • ALLOCATION 

*. •• • ROLL • 
•• • * ••••••••••••••••• 

* YES 

I 
V ... 

J2 -. .. .. 
•• ALREADY •• YES 

*. _. DEFINED ._ •• , 

*. •• I 
* •• * V i ~ ;"::.: 

V ····· .. 2·········· - . 
• REGISTER • 
• VARIABLE AS A .---, 
- SCALAR - I 
••••••••••••••••• V .... 

- * * B4 • 

* * 

I 
V ·····J3········ .. . -

• INCREASE -
- PROGRA" BREAK • 
- BY ENTRY SIZE • 

: .... ~~.:~:~ .... : 
I 
V .... 

* -
: (2 : 

- -: 84 : .... 
I 
V 

'04.303 .-. 
a4 e. .- .. .* e. YES 

-. A SCALAR '.1 *. .* 
*. .* * •• * y i NO : -::-: 

V 
••• '04430" 

C4 •• • •••• es •••••••••• 
• - •• - OETERM I NE • 

•• •• YES • NUMBER OF * 
•• AN ARRAY •• ------->.OIMENSIONS FOR. 

•• •• • SIZE OF TA8LE -
*..* • ENTRY • .. _,':0 :::::: ... , ....... . 

: OS :-> .... , 
V ,044305 V ..... 0........... . .... 05 ......... . . .. . 

.RECORO VARIABLE. • ADO 12 TO * 
• NAME AS. • SIZE OF ENTRY -
:NAMELIST ERROR: • ON WORK - * . ............... . 

I 
V .... . . 

• MZ • . . . ... 

. ............... . 
I 
V ·····ES·········· - MOVE NAMELIST -

• I TEMS ROLL • 
* GROUP TO 
* NAMELIST • 
*AI.I.OCA TI ON ROI.I. • . ............... . 

I 
V .... 

- . • MZ • . -



Chart CR. 

~~~ N~~~S~~T 
COMPARED TO
A POINTER TO
A NEW GROUP

ALLOCATE LITERAL CONSTANTS

.... A2········· .LITERAL CONST ••
• ALLOCATION •

I
I
V ·····62·· · . • INITIALIZE •

*PTRS TO LITERAL.
• COII/ST ROLL •
• ••••• I
: C2 :->1
•••• v

1044401 • -.
C2 -.

... e •
• - ALL -. YES

•• CONSTANTS .---, •. ::CCESS:;o' I
it •• it V

.. NO ••••

I
V ·····02·········· · -• COMPUTE AND

• SAVE PTR FOR •
- NEXT GROUP ON •

: :~~; :
I
V . -.

E2 ••
.- PAUSE -.

· .
- E4 • · -

.- OR DATA -. YES - -
•• STi'4T LITERAL .---)- C2 -

.
*. • ..

... • *
• NO

I
I
V

: •••• F2 ••••••••• :

• INCREASE •
• PROGRAi'4 BRE AK •
-BY NO. BYTES IN.
- PLEX •

I
I
V .····G2··•

• DETERMIII/E BASE.
* PTR AND
• DISPLACEMENT
• FOR PRESENT
• LOCATION

I
V .·0

"'2 *. .* ...
.* *. NO *. PASS 1 *--, I

... ... V
.. YES ••••

I
1044402 V ·····J2·········· • THROW AWAY BASE.

• PTR 01 SPLMT •
AII/O PTRS TO

• THIS LITERAL ·
I
V · .

• (2 • ·

· .
• 84 • · .

• * .. 134 .. · .
I
V ······a .. ·········· MOVE LITERAL

• TO OUTPUT AREA •
PUNCH I F CARD

• CORRE.CT •
I
V ·····C.··

- PUT BASE PTR -
• AND
.OISPLACEi'4ENT ON.
- LITERAL CONST •
• ROLL •

I
V

- . : C2 :

....
- -• E4 • - -....
I

1044404 Y ·····E.·········· · -- THROW
AWAY OLD
POINTERS

I
I
v ...

F4 * •
• * ... • ••• FS········· ... *. YES" ..

•• PASS 1 •• ---). RETURN
... .* .. *. ... • ••••••••••••••

.. •• it i NO

I
V ··.··.G •...........

PuNCn
AII/Y PART lolL

CARD

I
Y

• ••• H •• •••••••• · . RETURN •

section 2:

PUII/CH
REMAIII/III/G
TXT CARD

Compiler Operation 93

chart CS.

SUlLO FORMATS

94

ALLOCATE FORMATS

····42········· · . FORMAT •
ALLOCAT I ON •

I
I
V '44502

: •••• 82 ••••••••• : : •••• 8 •••••••••• :

SET • NOTE
I'-OINTER TO • ,...->. ADDITIONAL •

FORMAT ROLL • J :BASES REOUIRED :
• ••••• I I
: .~:. :->! I

' •• 601 .-. • *.
C2 •• Cl •• V

.* •• •• it. • ••• c ••••••••••
•• DATA •• NO •• PASS •• YES. •

•• TO PROCESS •• ----) •• 1 OPE~ATION •• RETURN *. .it it. ._

a..* *.._ * •• it it •• _

·1 YES : .::. :_> i NO

•••• V
V ,044501 ••• ·····02·.··• · 03 -.

• COMPUTE AND • •• *.

'044503 ··.···04··········· ·.····05···········
• SAVE POINTER •• FORMAT •• NO • PUNCH ANY. • PRINT MAP

LINE
REMAINING

• TO NEXT •• TO PROCESS •• -------> DATA LEFT ON ------>
FORMAT •••• • TXT CARD

• GROUP *..* j ;ES

I I
V V ·····E2·········· E3

• INCREASE·. •
PROGRAM • OBTAIN •

• BREAK BY. • .. UMBER OF WORDS.
:NUM~~R Fg~M:~TES: : FOR FORMAT •

I
V .•.

F2 e.
•• e.

•• •• YES
•• PASS 1 •• ,

*. .-
*. .-

* •• * V
• NO ••••

I
.44602 'II ······G2··········· MOVE FORMAT

TO OUTPUT
AREA PUNCH

IF CARD
COMPLETE

I
V

: C2 :

. .
: (2 :

I
V Fl··········

.CALCULATE BASE.

• ANO
• 01 SPLACEMENT
• FOR FORMAT ·

I
V

: •••• Gl ••••••••• :

• REBUILD
• FORMAT ROLL •
:WITH BASE PNTR :

I
'II ·.·.··H3···········

• PRINT FORMAT
MAP. IF
OPTION

SPEC IF lEO
I
V

: 03 :

I

I
I
I
V ····ES···

• RETURN

Chart CT.

DATA 1 HOLDS
THE ADDRESS
OF THE
VARIABLE

MAP EQUIVALENCE

• ····A2 ..•.•...••
EOUIV

* MAP

I
V

~ ..
BZ * •

• * •• ··.·B3········· .* ANY *. NO" • *. EOUI V ... LENCE .*----)* RETURN *
•• OAT....* ..

*. •• • ••••••••••••••
*-

* YES

I
V ······e2···········

PRINT
HE ... DING FOR

EOUIV MAP

I
V ·····02·········· .DETERMINE DELT

• FOR EOUI V"'LENCE.
• ... DDRE SSES DCB •
• TO B ... SE TABLE.

: ••••• ~!~~ •••••• :

I
V ·····E2·········· · . FLIP THE

• EOul v •
: ... LLOC ... TJON POLL:
· . I
: F2 :->1
•••• v

104410\ ••• 1044\02 V
F2 -.

•• DATA ON ••
•• EoulV •• NO

*. ALLOCATION ••
. ROLL .

.
* YES

I
.V ·····Gz·········· * MOVE NEXT •

COROUP TO
CENTRAL;
INCREASE

: :~~:~~~ : ,

I
V •••• ·HZ·· ... •••••••

• * * ENTER INFO IN •
• MAP. PRINT IF •
: LI NE COMPLETE :

I
V ·····J2·········· .DETERMINE B"'SE •

• POINTER AND
• DISPL ... CEMENT
: FOR VARIABLE

I
V ·····1(2··········

• PUT GROUP •
• FOR VARIABLE •
• ON COMMON .----,
• NAfIi1ES : I !~:~.:~~~.... v

• F2 •

·· .. ·F3··········
• COpy •
• COMMON NAME •
• TEMP ROLL TO •
• EOUIV ALLO- •

: .. S~!~~~.:~~~ •••

I
V

: •••• G3 ••••••••• :

!UPOA T~R~~~GRAIoC :

·
I
V H3··.········

PRINT
PARTIAL LINE

• Of MAP

I

I
V · .. ·J3········· · .

• RETURN

section 2: Compiler operation 95

Chart cu.

96

ALLOCATE SUBPROGRAM ADDRESSES

G0403

····A2········· - -- GLOB"'L SPROG

· ... :~~~~:!~ •.•.
I
I
V ·····82·········· - -- FLIP THE

- GLOB ... L SPROG
- ROLL
.. •••• .. I
- C2 -->1
* - I •••• v

104030 I 0 - 0 '040303 C2 e3.......... • •.• ·C ••••.•.••..
... .. • .. COPY COMMON 0- DATA ON -0 NO D ... T ... TEI4P - - FLIP *

0 THE GLOB ... L 0--->- ROLL TO ----->. TtiE USED LIB •

- 0 * 0 ~~~~G 0 _ 0 * : GLOB~~L~PROG : • ROLL -... i YES _ • I
I : 04 :->1

•••• v
v '040304 •• 0 '040307

••••• 02.. o. ... • •••• OS ••••••••••
- * o. .0 • COPY C014140N
- MOVf NEXT -
'('ROUP OFF ROLL •
• TO CENTR ... L •

1
I
I
v

0-0

<2 ····[3·· · 0-
0-

- 0

... YES" ..
DUMMY 0-----)* INSERT ZERO T ... G-

... .. VALUE ..
*. • ..

... • *
- NO
I
I
I

I
,040308 V

..... *F 2
- "'LLOC ... TE •
• STOR ... GE FOR
.... OORE SS RECORD •
-(PRINT LIST) •

I
I
I

I
I
I
I
I

SPROG ... LLOC ... TE I
",NO OUTPUT I

: ... ~~~~~.~~~
I I
L~. ________ --JI
I

1040302 v ·····(,2········.· · .
- PUT GROUP
-ON COMMON 0 ... T... -
• TEI4P ROLL •

-.................
!
v

• (2 • - .

- .
• H3 • · -
I
V ····· ... 3·········· - ... LLOC ... TE •

- STOH ... GE fOR -
.... DD~lSS RECORD.
- PHINT LIST -

: ... ~~~~~.~~~ ... :
I

• •••• • I

• J3 .-> I
• - I •••• I

v
•••• *J3·· •••••••• - .
• PUT C,ROUr' -
-ON C014140N D ... T ... -
• TEI4P HOLL -

.
• 04 • · .

•• D ... T ... ON .0 NO - D ... T ... TEI4P
-. THE USED LIB 0.---->- ROLL TO

- 0 ROLL 0- - USED LIS
- 0 o. . FUNCT I ON RoLL -* •• * •••••••••••••••••

- YES I
I I v I .a. V

E4 ... • ••••• ES
.* ... 0- INLINE -0 NO -0 FUNCTION .----,

*. *. .*.*. ,
.... * v

.. YES

I : H3 :

1
v

• •••• F ••••••••••• . -M ... RK GROUP
fOR INLINE

FUNCTION

I
v

- -• J3 • . -....

SPRDG ... LLOC ... TE
... NO OUTPUT

- PRINT P ... RTI ... L -
LINE OF SPRDG

- LIST IF -
REOUES TED

1
I
I
V FS···········

PUNCH
P ... RTI ... L ESO

C ... RD

I

I
V .···GS········· - -RETURN

Chart cv. BUILD AND PUNCH NAMELIST TABLES

G0405

... ·A2·········
• BUILO •

NAMEL I ST

• ••••• !:~ .. ~ ••••••

,*,
ti2 *.··f:j3·· .•.....

• .. DA T A ON ... NO" ..
*. NAMELIST • *---) * RETURN ..

•• NAMES •• •
... ROL L ••

• YES

I
V ·····C2·········· .. FL! P ..

• NAMEL 1ST NAMES •
• ANO NAMEL 1ST •
• ALLOCATION

ROLLS
I
I
I
V ······02··

• PRINT HEAOING •
FOR NAMf.LIST

• MAP IF

•• ~~~~~;!~~ ••
•••• I

: £2 :->1
• • I •••• V

THE LATTER
HaLOS THE
I T[MS FROM
THE NA"'ELIST

LIST

,04050 I ••• 1040505
(2 w. • •••• ~3 ••••••••••

•• UAT A '. • COpy COMMON •
" LEFT ON ., NO • OATA TEMP •

" NAMEL 1ST ,.--->. ROLL
., N .. Mrs ,* • TO NAM[LIST

-.RnLL .* • NA""ES ROLL
• Yf <;
I
I
I

I
v •••.. -F2·· ...•••••.

ENTER NAME'
LaC IN MAP
LINE PRINT

IF LINE
COMPL E T l

I

I
I
I
v *G2·····.· .. ·

* puT BASf ANO •
• 0 I <;PL ACEME NT
• O~ NAHlt. !sr
• T ABLE ON (01'4- •
• 1'40"1 OATA TEMP'

I

I
V •..• ·HZ·· •••.•••.

• MOVE NAMfLI<;T •
NAME AND 2 •

• WORDS OF 0 TO •
• CODE ROLL AND •
• OUTPUT •

I
• ••••• I

• J2 .-> I
• • I •••• v

1040502 ,',
J2 ••

• ·OATA. ONe.
,. NAMELIST ., NO

*. ALLOCATtON .'--,
., ROLL ,. I

*. ... I
' •• ' v

• YES ••••

I
v

• 84 • . .
· .
• H4 • · .

............
I
I
I

I
V

• ••••• F 3 •••••••••••
PUNCH AND PRINT

• REMAINING •
INFO IF

REQUlSTE.)
I
I
I
I
I

I
V ···.GJ·

THE 0
ANSWFR IN

D�cATEs EITOotER
NO DATA OR

A MARKfR

· .
• 84 • ·

I

I
,40500 V ·····64.·.·

• MovE FIRST 'I •
WORDS OF

• I TEM ENTRY
• TO CODE ROLL
• AND PI)NCH
;;;.;.;.:;;.;;;;;..;.-.--

I
I
I
v ,. ,

(4 '.
~ .. ,. ., ,,0

*. VAw I ABLf AN • *---,
'. ARRAY .' I

'. .' I
'. .' \I

• YES
I
I

I
V ·· .. ·04·········· · .

MOVE ALL
• DIMfNSION •
'FACTOil!:; TO COOE*

: ~~~~ :
I
v · .

: .)2 :

· .
• H4 • · .
I
v · . .

.UPDAT[PRLGWAM •
• BRE AK • ·

I
I
v · .

• E2 • · .

.
• J2 •

Section 2: compiler Operation 97

Chart cw.

98

BUILD BASES

G0438

····A2········· • BUILD •
ADDITIONAL

• BASES •
.... I · . · B2 .->1 • • I

V

·····B2·········· • •
• OBTAIN •
• PRESENT PROGRAM.
• LOCATION •
• •

I
v ...

C2 ••
.... ····C3········· •• MAX FOR •• YES • HETURN •

•• LAST BASE •• -------->. •
•• .* • ••.....

* •• -

i

NO

V

·····02·········· · . • INCREMENT •
• BASE ALLOCATION. · •

.

V

·····E2·····.···· · . • REGISTER •
• NEW BASE •
• ALLOCATION •
• •

I
v

•••• • • · B2 . • •

chart Cx. DEBUG ALLOCATE

..... A2·········
• DEBUG •

ALLOCATE

I
• • I
: 82 :->1
•••• v ...

82 *. : •••• 83 ••••••••• :

• * DATA *. NO .. INVERT •
".ON INIT ROLL •• ------->.THE SUBCHK ROLL·

. -. .-
* •• -

• YES

I
V ·····C2··········

• MOVE •
• VARIABLE NAME.
.OFF OF ROLL TO •
: CENTRAL AREA •

...
02 *.

.** MATCHING *. NO

•••• G~g~~ A~N •••• ,

•• ROLL •• I
• YES

I I
: •••• E2.~ ••••••• : I
• SET THE: INIT

• ~~~L!~ !~~L I
: ••••• ~~~~~ ••••• : I

I I
I < ---------'
I
I
V ...

F2 ...
.* ...

.* MATCHING *. NO
... GROUP ON • *--,

... ARRAY .*
•• ROLL ••

• YES
I

I
I
V ·····Gz········ .. · . : ~~iTT~~ +~~i

ARRAY ROLL
• GROUP •

I I < _____ .J

I
I
V .•.

H2 *.
.* MATCHING *. NO

.GROuP ON GLOBAL.----,
•• OMY ROLL •• I

•• •• I "
• YES
I

I
I
I
V ·····Jz·········· • SE T •

• THE. INIT BIT IN •
• THE GLOBAL OMY •
• ROLL GROUP •

...... .. .
.. 82 •

" *

* .. 82

.................
* ••••• I
: C3 :->/
•••• v ...

(,3 ..

• * ... ····c.········· •• DATA •• NO. •
*. ON SUBCHK •• ------->. RETURN

. ROLL. • *. ... • ••••••••••••••
.. •• *

• YES

I
I
V ·····03·········· • MOVE • * VARIABLE NAME •

"OFF OF ROLL TO "
: CENTRAL AREA :

I
I

I
V ...

E3 ••
•• MATCHING •• NO

"GROUP ON GLOBAL.--,
•• OMY ROLL ." I

*. ." I
* •• * I

" YES I

I
I

I
V

••••• F 3 ••••••••••

• SET "
"THE SUBCHK !:lIT"
• IN THE GLOBAL •
.OMY ROll GROUP "

" "

I
1<
I
v

." .
G3 ••

•• *.

I
I
I
I

I

I
I
I

.- ;..jlit.TC";iNG -. NO

" ••• GR~~~A~N ••• ",
•• ROLL •• I

.. •• * v
.. YE..::i ••••

I
I
V

••••• H] ••••••• •••

" * "SET THE SUBCHK "
" BIT I N THE "

ARRAY ROLL ~~~~~
I
I
I
v

" .
.. C 3

" . : (] :

section 2: Compiler Operation 99

Chart 07.

100

PHASE 3 - UNIFY

GOIII

···· ... 2·· · . START UNIFY •

I
1

GO 145 V .. ···8Z·· ...•....
:~~~.~~~ .~;:~~!~:
• ALLOCATE •
:GROUPS FOR ROLL:
:*::·:->1
•••• v .. .

(2 ... • •••• e 3 ••••••••••
•• •• .COPY AREA FROM •

•• DATA ON •• YES • RESERVE START *
. PROGRAM .---->.TO SCRIPT ROLL.

•• SCR I PT •• • RESERVED AREA *
*. ROLL • * •••••••••••••••••

• NO 1

I v ,
• I I 106 V • C2 • ·····02······ · .

• RE SERVE
• PROGRAM SCRIPT.
.. ROLL
::::: :-,1

V
: •••• E2 ••••••••• :

MOVE NEXT
GROUP FROM
SCRI PT ROLL

I
I
V

.* .
F2 ••

•• END •• YES
•• OF ROLL DATA .*--, •.•• .••• I

* •• * v
.. NO

1 : u :

V ·····G2·········· · .
• REPLACE •
• GROUP ON SCRIPT.
• ROLL •

1
GOll5 V .····H2··········

:~~-~:~.~~:~::~:
PROCESS
NEST OP

* LOOPS •
1
v ...

J2 w.
... e •

: •••• J3 ••••••••• :

•• LOOP TEMP •• NO • SET REO LOOP •
•• CNTS REO LDOP •• ---->.TEMP CNT = LOOP •

•• TEMP CNT •• • TEMP CNT •
*.

• YES

I
V

• E2 • . .
I
V

• E2 •

. ... · · .
I
V · .

• ~ELEASE •
.PROGRI'M SCR I PT •
: ROLL :

1
V ·····e · . SE T UP

• POINTER TO •
:ARRAY REF ROLL :
• •••• • I
: c" :->1
•••• V

.* • c. ...
GO 113

... ... ····C5········· •• POINTER *. YES • CONVERT TO •
..OUTSIOE ROLL .*--->* AD DR CONST

... •• • 08A2 •
j"
V ·····0.·········· · . .SET REG RUNG = •

." AND INCREASE •
• POINTER :

I
I

GOl12 V ·····E.·········· *eNVT "FORMT -DCA2 • . -.-*-.-*-.-.-.-.
• CONSTRUCT •
• INSTRUCTION •
• FORM.FOR REG2 •

I
I ,
V .····F •.......... · . · • INCREI'SE REG

* RUNG BY "

I

I
G,0112 V ·····G.·········· .CNVT "FORMT-OCA2. .-.-.-*-.-.-*-.-.

*CONSTRUCT INST •
• FORMAT FOR •
• REGISTER 2 • ,

I
V · .

• C" •

• *

Chart DA. BUILD ARRAY REF ROLL

G0145

.... A2········· ARRAY REF
ROLL

ALLOTMENT

x ·····B2··.··· ••.• GET
BEG i NN PlG

• ADDRESS OF
-ARRAY ~EF ROLL •

r. ·····C2 •••••••••• · GET ADDRESS •
• OF PARSE SAVE •
• AREA

•••.• oz.!........ 03··· •
• • ..NO. OF •• • ••• 04 •••••••••

GET NUMBER. •• ENTRIES •• YES •
• OF ARRAY REF ••••••••• X •• EQUAL ZERO •••••••••• X. RETURN •
• ROLL ENTRI ES • •••• •

• *..* •••••••••••••••

.... · .
•. • *

• NO

• E 2 •••• •
• .. x

LOAD GROUP •
• I~oI(ATEo WITH •
• INITIAL ZEROS

x ••• · ~2.......... F3 *.
• •• ALL •• • ••• F4 •••••••••

I~LE' TO •• ENTRIES •. YES
~JfXT E.lkY ••••.•••• X.. PRG('ESSED •••••••••• X. R;::lURN

• PO:."H ON ROLL 0 o. .0 •

o 0"
* •• *

• NO

• 0

• E2 0

Section 2: Compiler operation 101

Chart DB.

102

MAKE ADDRESS CONSTANTS

GO I 13

• 1 •• A2 •••••••••

- ~ONVERT TO •
- "'DR CaNST

I
v ·····B2·· - .

-SET UP POINTER -
• FOR LOOP •
- CONTROL ROLL
:"::':->1
•••• y

1011301 •••
C2 *. . - .. : •••• C3 ••••••••• :

• - POINTER -. YES • SET UP O ... T... •
-.OUTSIOE ROLL •• -------) NO INITI ... LIZE •

•• FDA GfN ..
*.

... • * •••••••••••••••••

. "' I
·····02·········· - -

INCRE ... SE
POINTER

I
v ·····EZ·········· - -- MOVE :e ... Sf I NFO TO WO:
1
V ...

F2 *. . - ...
• - REFER TO. -. YES

v ····03········· - -- IEYGEN

-. TEMP ... NO .---------.

-. CONST • - I -.ROLL ••

}~o I,

G2 *.
. - ... 1 _:- R~~~~~:~ -:_~S ______)

... .*
*. • .. -.. - I

- NO

.. J..... 1,1

.* *. YES
-.TAG FIELD = 0.-------->1 -. . - I *. .-*

- NO ,

I I
v I

.". ,011302 v
J2 ... • •••• JJ ••••••••••

... WORD
... EaUAL TO ... YES

... OR LARGER •• ---->"
... THAN 0

- NO

I
v

-.. A4 .. - -

PRUNE WO

I
I
v

- "
- C2 -- "

1011103
.......... 44 •• • .. · .
'FOR dAS[([VlN'
• CODE •
• 01 SPLAClMENT) •
- IN 0'" T ... 3 •

. ' .
34

• *GRP ~ATCM[S •• YES
*.Ofrlt AOR C(NST •• ---,

'. ROLL .' I
". .' I

... ... v
.. NO ••••

·····e.······ - -"SET POINTER T() •
• NEW GROUP ()N •
• ADR CONS T RLLL • ·

·····04·····.··· . " • PL "'CE e ... SE AS •
'NEW GRP ON ADR "
- CONST HaLL •

I

I
I
I
v *f.·········· "INCREAS[f'T" <lye

- TEMP LaC FOR •
*LOCP5 BY "' ANt,) •
• PUT ON ADH -
• CON:,jT •

I
" • I
: F4 :->1
•••• I

111304 V · ····F4 ..•.......
• REPLACE !lASE •
- .1 TH TE"P PTR •
• ON LOOP •
• ceNTRaL ROLL • -.................

• (2 •
"

THE W()RD
DOES NOT
CONT"'IN ... N
AR[A CODE
AND 0 I SPLAC[ME NT
I NO I ~ A T I NG ~
NEED FOR A
TEMPOR ... RY
LOC ... TION

. "
.. F4 .. . "

chart DC. CO~STRUCT INSTRUCTIONS

GOlle.

····AZ·········
• CONVERT TO •

!NST FORMAT

I
I
1
I

I
V

·····6Z··········
• GET •
• REG RUN OFF •
• ARRAY REF ROLL •
• FROM POINTER •

.................
1

I
;; ...

CZ •• ····C3·········
•• GENERAL •• NO. •

•• REG. NOTED •• -------->. RETURN •
... .* ..
.. •••••••••••••••

• YES

I
I
V

·**··02········** · .
• MASK •
• REG. RUNG VALUE. · . • •••••••••••••• **.

I

!
1
1
V

·····EZ··········
• PLACE •
• VALUE IN R2
• POSITION FOR
• INSERTION ON

ROLL
I
1

I
V ...

FZ •• Rl •• RZ

•.•. ~~ .• ··---,,1
*. ... v

• Rl ••••
1

I
1
V

·····G2·········· · . SHIFT •
VALUE TO Rl •

• POSITION · "
•••• I

: HZ :->1 ·
V

·····HZ·········· · . • INSERT VALUE IN.
• ZERO RUNG OF •
• ARRAY REF ROLL • ·

I
I
V

····JZ········· · .
• RETURN • • •

. .

. HZ ·
" "

section 2: Compiler Operation 103

Chart DD.

104

PROCESS NESTED LOOPS

GO I I ~

... *.2·········
.. 00 Nf'Sl \J~IFY •

I
I
I
I

• A? • -> I
I •••• I
v ·H~·········· · .

• INI 1 IAL I Zf LOOF'
• Ilfro1P ("NT AND •
• N[XT LEVEL •

I
I

I
I
I
v

• A 3 •

I
I
I
II A3*·········

• * Rf.SERVE *
NEST sc<nPT

ROLL

I
I
I
I
I
I
II AJ········.· · .

• CGPY ~.C.RIPT
'ROLL ONTO NEST'

fJ,(PIPT ROLL •

. '. wC;>·········· (3 *e.······' *. *S[T OUTER LOOP *
• PLACE· IND. .* Nrl"" .. T *. YES • CONTROLS AND
*VAR. COl FF. o~ •
• HE. ~) T , N.O •

*. Llllt L = I • *----> * DETERMINl
'. .' • SCRIPT '..* • ALLOCAT!ON • '.

I
I
I
I
v *02·········· .

CONVUH *
* ARRAY OFFSETS *

* *
I
I

I
I
I
v

•••• *f 2 ••••••••••
(OMPARf

• N[ST LEVEL OF •
o LOOP WITH *
• PR[VIOUS N[ST •
• LfVEL •

I
* I
* F2 *->1
* * I

V
,011':>02 .*.

F2 ••

I
I
I
I
I
II

NO

.... eOJ··········
o PL ACf I NIT I AL •
'REG. COUNT AND.

IND. VAw.. •
'COFFF. ON NEST *
• SCRIPT *

I
I
I
V

* *
• 02 •
* "

.* J S •• • •••
•• NL 2. NO..

. LESS TtiAN .--->* H2 •
•• NL I .' ••

'. .' '. ..
* YE S

.*. '011~04
[,2 '. - •••• 63 •••••• - •••

Nl2 *.YES *PLAC£INOVAR"
'. NOT EQUAL • ·---->*OF INNER NESTEO'

-. TO NLI .' • LOOP IN.O -
'. .'

'. .' * NO
I

• * I
:.::*:->1

tOI I~O) II
•••• -H2" ••••••••

* * SE T
NEST LEVEL

I NO I CATOR
I

I
I
V

I

I
1
\I ·····H)·.··· · . PLACE NEST

* LEIIEL ON *
'PROGRAM SCRIPT'
• ROLL •

I
I

I
I
I
\I

I
I

I
I
II

••• ·04 •• •••••••

4E TUHN

....
* * * Fit *-,
* * I

I
V

*
*

••••• F •••••••••••

* * PUT POINTER
• TO ARRAY.
* OF f S[TIN WO ·

I
I

I
I
I
\I

: ••• *G4 ••••••••• :

·
OETEilMINE

SCRIPT
ALLOCATION ·

I

I
\I ,..

* SET *
* AIIAILABLE *
*REGISTER COUNT *

FOR SCHIPT *

: .. ~:::~~~!~~ ... :
I
I

I
II

.* . ·····J2······ · JJ J4 • • • •••• J5 ••••••••••

PLACE NEST
" LEIIEL ON •
*PROGRAM SCRIPT.

: ~~~~ :
.. ..

* • AJ •
• *

* •
* PUT IND
·vAR COEFF IC IENT*
• TN W1 •

I
V

* *
• F" •

• *

.' '. . .
.* MORE '. YES .SET NEST LEIIEL *

.NESTED LOOPS .---->*TO PROCESS NEXT*
'. .' • LOOP •

'. .*
' .. '

* NO

I
.~ ..

• *
• F2 •

* *
*

I
II

• F2 •

* *

chart 08.

S T IA.HT Gf N

PHASE 4 - GEN

G0491

.···A2········ .. · .
• IEYGEN •

V ·····82·········· - .
INITIALIZE

............
I
I

I
i

G0499 V ·····C2··········
:~=~.:~-~~~:~~:~:
• PRODuCE CODE
- F OR HE AD I NG •
• AND ALL ENTR ••

I

I
I

G0504 V ·····02·········· :~~~;~~-~~~:~~~~:
- PRODUCE ALL
- REQUI REO -

: .. ~~~~~~~~.~~~~.:

G0508
...... *l2""" •••••••
-tPILUG ('[N-EC"2-
.- .. - *- .. - .. - *-* -*- ..

P..,ODUCE
..,rauIREO a

a fPILOGUE CODE a
I

• • I
• F2 a_>1
• • I

GO 712 II
••• ··F 2 ••••••••••

:~~ ~ .~~~! ~~ -;~:~:
MOllr POL I SH a

a FOR STMT TO

: ~~;! ~~ .~~~~ ... :
1

I
I
V ·····G2····· MOVE ..

a STMT NU"BER a
aFRDM POLI"H TO a
.. STORAGE ·

·····H2·········· a a
-MOVE NEl< T GRDupa
- FROM POLISH a
a ..,OLL TO WORK

: :~~;
I
I
I
V .a.

J2 * • . - ...

POL ISH
NOTAl 10 ..
IS ON AFT[R
POL I SH ROLL

• * *. NO
a.LABEL POINTER.a, .-. .-

. .
... ... V

.. YES ••••

I
V

a a
.. A4 ..
• a

. .
: '4 :

....
a • .. . " ..
• a

I
i

G0493 V .. ···A4··········
:~~~.~:~~-; - ~~:~:
a REMOVE AND -

PROCESS ;:~~~ :
I
I
V ••••• S.. •••••••••• • •• ··85···· •••.••. ·

'MOVE NEXT GROUP- • IND:CATE
• FROM POLISH .--->. ~TA1EMENT -
• ROLL TO WORK • -NUMBER ON CODE •
• ROLL • • RULL -.................
• • I ~ CII ~-, ____________ J
• • I ~ -

G0515 V ·····C.·········· • STA GEN-EGA2 •
-. -.-.-. --.-. -.
'GEN OBJECT CODE'
'FOR STMT IF END'
• 5TMT TERM PHS •

I
GOll96 V ·····0.·········· :~!~.~~~~~-~~:~:

• GEN COOE FOR •
'00 CLOSE RESET • : .. !~~:.:~!:: ... :

1

I
V

a •

• F2 • · -

CODE I'
PRODUCED
ON THE CODE
ROLL

section 2: Compiler Operation 105

Chart EA.

106

GENERATE ENTRY CODE

G0499 ····A2·· · ENTRY
• COOE GEN •

.. .
82 ... • •••• 133

• * ... • ..
." SOURCE ". NO PUT .. " I N

".1. SUBPROGRA ... "---->*PROGRAM H[ADINC,"
... .* .. ON coor ROLL ..
*..it

• YES I

I
• 04990 I I(·····C2········ .. · .

• INITI.LIZf A
"POINTER TO THL •
• ENTr, 'f NAME S *

ROLL •

• *.
02 *.

... *.
• *NO. GROUPS *. YE S

... ON ENTRY • *--.
.NAMES = 1. I

* *.* I
* NO 1
I ,

I !
II I' ·····EZ·· -...... .

" BUILD A LABEL * ,
* RECORD INIT. " ,

: ~g~EL~~ ~~:~O: I
* FOR LABEL • I
••••••••• •••••••• I

I I 1<------>-

I
'049902 V ·.· .. F2·········· * •

* INSERT
• PROGRAII4 NAME IN.
• CODE •

I
1
I(····-Gz·········· • PUT CODE "

F"OR INITIAL
SUBPROGRAII4

ENTRY ON
• CODE ROLL •

I

I
GENERATE V ·····t-i2··

• GE",ERATE •
ADDRESS

• CONST ANT
o FOR PROLOGUE

: ••• :;~l~~~~; ••••

I
II ·····J2·········· · . BUILD SAVE

• AREA AD CON
• COOE FOR EXIT. ·

I
V

• B4 •
o •

I
I
I
I

SE T uP II ···C]-........ .
* Sf T UP "

S"l(f AREA
LOCATION AT
CURRE NT LOC

1

I
1
1
V ····03········ .. .

RETURN

. "

. ... · .. B_ ..

. " .
B4 -.

O •

• - ALL -. Y[5
-. GROUPS • *---->*

-.PROCESSED.- •
Rt 1lJ~N

•. .• .. ••• -- * * •••••••
' .. '

• NO
1

I
1
I
V ·····e"····· .. ··· .. · " Rt: DULl

"COUNT OF GRUUP""
• 10 PROCf5S ..

I
1

• 0 I
• 04 0->1
o .,
..... v

1049'103 ." •
04 '. ... '. .. ···OS······

• • AL L ... YE 5. •
•• vJ".lOUP<) •• ---->. ~ETU~N ..

... PROCE. ~J5[O..
'. ..

• NO
I

I
I
j
V · ····E · " REOUCE

·COUNT OF ~~~Oupc:.'

• TO PRo(r'>s "

I ,
I

I
V ·····F.······ · . • INSEHT •

• ENTRY NAME IN •
• CODE •

I
I
I

I
I
v ·G4······ · " * PuT CODE •

• FOR ENTRY ON
• CODE ROLL

I
I
1
V ·····H •..........

" " BUILD INITIAL"
• PROGR"M ENTf<Y •
• AD CON COOE ·

I

I
V ·····J4·.····· ...

• 0 GENERAT(
PROLOGUE
.EPILOGUE

• AOCO"',S •
. ...

" 0

• 04 .. ·

Chart EB. PR0LOGUE CODE GENERATION

GOS04

...... 1.2

: PROLOGUE GEM :

I
V ·82·········· · . • INITIALIZE •

• POINTER TO
• ENTRY NAflilES
• ROLL

I
V ·····C2·········· -iNiTiALiZE CNi ..

.OF GROUPS TO BE.

: P~2~~~S~~ .. ~~ :
: :~~ :
(::. :->1
•••• v

'050401 ,.,
02 •• ... ALL··03··.······

,. GROUPS ., YES' •
., PROCESSED ,.---->. RETURN

*. ... • ••••••••••••••
... • *

• NO

I
V •.... E2.......... . .••. E3 •....... ·.

• • BUILO A •
• REDUCE COUNT • • LABEL •
.OF GROUPS TO RE.--->.INSTRUCTION FOR'
• PROCE SSED' • PROL OGUE •

o
.. F 2 .----.

• • I •••• I
V ... ·.F2·········· 'CONSTRUCT CODE •

• FOR LOADING •
• ARGUMENTS. IF •
• ANY •

I
1
V ·····G2·········· • COHTRUCT CODE •

.FOR COMPUT AT ION.
• OF CUfIIIfIIIY •
.DIMENS[ONS. IF •
.. ANY

I

I
V ... ··H2·········· • CONSTRuCT

I ,
I
I
v

, " FJ .,

.* *.
,. OEBUG ., NO

'UNIT SPEC[FIED,.--,
. . I *... f

• YES I
I I

1 1
I I

..... GJ.~........ I
it BUILD DEOUG •
• LINKAGE. UNIT. I
• COOE AND UNIT' I
• NO, [N CODE· I
• ROLL • I ••••••••••••••••• I

I I 1< .
I
V

'50414 ,.,
H3 *.

.* *.

· .
• B4 • · .
I
V · .. ··a.·········· • PUT LOCATION

OF CLOSE OF
PROLOGUE [N
ENTRY NAMES

• ROLL GROUP
I

• 05402 V c........... ····.C5···.··· .. · .. .
UPDATE' • CLEAR •

POINTER TO .------->. BASE REGISTER •
EN'!RY N .•. ~ES • • '! A2!...E. •

R~L •
. .
.. C2 • . .

• COOE FOR
CLOSE OF
PROLOG'JE

... SUbTRACE *. NO

... ,. ,
I

I
v

.. S4

., SPEC[FIEO ,'-->. F2 0

*.
. -

o YES

I
I
I
I
V ·····J3·········· • BUILO 0

o DEBUG LINKAGE'
o ANO SUO TRACE •
• START COOE ON •
• COOE". ROLL •

I
;..

.. F2 • . .

Section 2: Compiler Operation 107

Chart EC. EPILOGUE CODE GENERATION

COSOS

..... ~2···"·"""" · . • fPIL::JGI)!, GE'I

'050803
B2 *. ·····83.· ... ·

• ·SUBP'<OGRAM '. YES • OBTAIN NO.
'. ENTFRING TO •••••••••• X' OF GROUPS TO

'. P,<OCfSS .' • PROC.ESS

• G I •

• 'iOe04
vi ..

'. NO

...... ~(J

x
.......... (2

• SE T •
• LAA"L •
'INSTRUCTION FOP.
• MAl N PROGRAM

ENTRY

x
.......... 02 •

'BuilD COOf FCR •
• (LOSE.j, •

"PlL(lG'_'~ 0,
MA I ~j Pk(;l

.................. 411

x
.......... E2 •• · .
• BUilD • • MA I N PROLOGUE •
• CODE •

x
........ F 2

RE TI!R:, •

• ' SUflTRALE
SPECIFIH) .* .•.• x. (,4 ..

...
• YE S

x
......... H 1*

tlUiLD Of tlllG ••••
L I N~A('E A'jO. • •

SUflTRA(r ., ••• X' G ...
ENe C(JCfS
IRETURN)

108

· '. • C3 ',X,
*n50~Ol

C 3 " (4 •••••••••• · . " ALL '. YES - PRUNE •
'. GROUPS X'lAST ENTRY FROM'

',PROCESSED.' • WORK ROLL •
*

• NO

X ·····03·······
-Sf T BASE TABLE -
-AS REQUIRED HiR.
• £oP I t OGUE •

x E3········· .
'!lUllO INSTRUCT.
• FOR DUMMY •
.ARGUMENT VALUE •
• TRANSFER •

x •. ·.U4··· ••• •••
RETURN

.'. .050802
F 3 .. • F 4*

.' ENTRY.. • •
DEFINED '. NO • PRUNE • • •

•• AS SC.ALAR •••••••••• X-LAST ENTRY FROM ••••• X. Gl •
'. .' • WORK ROL L' • •

• YES

x ... ··G3-·········
• ~~~f~uE9tgN •

·
AND C.L EAR

AC.CUMULATOR _

• Gl • . .

· · .
• G4 •••• · .

1050S:;' x ·····G4·····.····
:BUILO CODE FOR:
• CLOSE OF •
• EPILOGUE OF

: ~~~:~~~

X H4·········· ·
'DECREASE NUMBER. • •
• OF GROUPS TO ••••• X. C3 •
• PROCE S S • • • ·

Chart ED. MOVE POLISH NOTATION

G071~

····"2·········
• GET POLISH ·

I

I
I
I
V

·····92·········· · .SET UP POINTER •
• TO AFTER POLISH.
• ROLL • ·

I
I
V

·····C2·····.··.· · COPY.POLISH
• FOR snH TO
• POL I SH ROLL

.................
I
I
V

·····02·········· · . • UPOATE CONTROLS.
• FOR AFTER •

POL I SH ROLL • ·
I
I
I

I
V

····E2········· · · · RETURN

............... · •

Section 2: compiler Operation 109

Chart EF.

110

PROCESS LABELS

G0493

····A2··
LBL PROCESS

!
I
V ·····82······ · .

• STORE POINTER'
'TO LABEL IN ST'"
• LBL BOX •

I
I
I

I
I
I
v ...

02 *.
.* *. NO

'. JUMP T "RGf T •• -----,
. . I •.•. .•.• I

• YES I I
I

..... E2.~........ I
· . 'I
• CLEAR THE •
• BASE REGISTER.
• TABLE •

I
1<

*049301 V ·····F2··· ... ······ · . PUT LABEL
• CODE ON CODE
• ROLL

.. .
H2

• * DATA *. NO

I

*. *. g~L~T •••• , .. .' ,
... ... \I

........ i YE S

I
.. (4 •

: J2 :->
•••• V

*49302 .'.
J2 ••

... AT ... NO
·STMT. FOR THIS •• ~

•• LABEL •• I
... ... I

... ... v
• YE 5 , ..
I • (4 •

V . .
.. B3

...... .
• B3 • · .
I
V ·····83····· ... ··

'MAKE LABEL FOR •
'OEBUG CODE-PUT •
'BRANCH ON CODE •
• ROLL • ·

I
I
I
V ·····C3··········

"PUT POINTER TO "
• MADE LABEL ON •
• AT ROLL-WORO •
• 2 OF GROUP ·

I
I
v .. ···DJ··········

• MAKE LABEL "
"FOR NEXT INST- "
• RUCTION - PUT.
" L ABEL CODE ON •
" CODE ROLL •

I , , ,
V ·····£3·····

'PUT POINTER TO •
• MADE LABEL ON •
• AT ROLL-WORO •
• 3 OF GROUP •

I

I
v

•••• *F 3* ••••••••• · .
• CLEAR WORD I
• OF AT ROLL

GROUP

I
v · . .. J? .. ·

FIRST WPRO
OF AT RCLL
CROUP IS
COMPARCD WIT>1
STA LtiL BOX

" .
.. (4 ..

'49305 .".
C4 ...

... (5 •
... T RAC[... NO ..

*. SPECIFIED •• --->.
.

• YES

-_ .. *D4········· ..
• PI)T Of.tUG •
• Ll'~KAGE FOR
• TRACE ON COOf •

ROLL
I

I
I
I
V ·····EIt

PUT BINARY
LABEL ON
CODE ROLL

I

I
V ····F.· ... ·

RE TU~N

~ETU~N

Chart EG. GENERATE STMT CODE

G0515

····14.2········· • •
STA GE~ • •

I
v ...

B2 ••
=* STMT ••

•• FUNCTION •• YES
•• MADE LABEL •• ---,

•• PTR = 0 ••
.

• NO

I I
v

I ...
C2 ••

•• STMT ••
•• FUNCTION •• YESV

•• DRIVER ON •• 1
•• WORK ••

. .
•. .*

• NO

I
V

.... ·02··········
• BUILD •
• CODE FOR •
• STATEMENT •
• FUNCTION MADE.
• LABEL • •••••••••••••••••

I r
I

,051502 V

·····E2·········· • • • GENERATE • • CODE FOR • • STATEMENT • • •

I
I
I
V

"·**f'2·····===· • • RETURN
•

THE JUMP TO
APPROPRIATE
CODE GENERATION
THE CONTROL
DRIVER IN WO
AND THE STA
RUN TABLE.

...............
I

I
I
I
I
I
V ·····B4 .. ·.·

~ =
• PREPARE •
• FOR EXIT PHASE •

I
I
V

·09 •
• A2· . . TO PHASE 5-

EXIT

Section 2: Compiler Operation 111

chart EH.

112

COMPLETE OBJECT CODE

G0496

····A2········· • STA GEN •
FINISH

...............
1

I
• • 1
• b2 ·->1
• • 1 •••• V

• 049603 •••
Ei2 ••

•• DATA ••
•• ON DO •• NO

•• LOOPS OPEN •• ---,
•• ROLL.· I

•• ... v
• YES
I

I

.... . . E3 . . .
V

·····C2·········· · . MOVE •
• GROUP OFF ROLL • ·

I

I
1
I
V .·0

02 .0 1049601
·····03·········· .

•• POINTER"' •• NO •
·.LABEL OF THIS •• -------->. REPLACE OROUP •

•• STMT.. • ON ROLL •
* •• -

• YES
1

I
1
V

·····E2*········· · . • CONSTRUCT •
• 00 CLOSING CODE.
• ON CODE ROLL ·

·
I
1
V

• B2 • · .

.................
1

•••• 1

• • I · E3 .->
• • 1 •••• 1

1049602 V

·····E3·······.·· · .
• RESET TEMP •
• POINTERS AND
• ACCUMULATORS ·

I
1
V

··.·F3········· · .
• RETUR

...............

Chart 09. PHASE 5 - IE'iEXT

GO)!!I

·· .. ·.i\2········· · • f:X II' I't,~~;

j
..... 82*········· · .

I NI TI AI.I7.f

1 ··;;;;C2····· ···
:!~~.~~~~Lr:-:!:
'PCR ~MLIST TRL •
• WORD!': HLDNG, •
o POINTER!; •

"'"' 1 ·····02···
:!;~ .!~!~~ ~= !~?:
• PCH TEMP STGt: •
• AND CONSTANT •
• MEA •

'"'' 1 •••• IE2* fit •••
'PCH ADCON- F"AA2 •
t-f-t-O-t--t-t-I-t
• PCH RLD CARDS •
• FOR TEMP AND • : .• ~~~r.z:~~ ... :

j
• o.

F2 -.
• -OBJECT '.

• 0 LISTING
o·oREQUE:'TED

I. • •

I •• '

i'''
• NO
.'--..

•••• "Gl'" ••••••••

• PRINT HE'DINr. •
• FOR LISTING •

,.... l<~~~~~~~~~-
·····H2······ •• ••
• I'('B CO RL-.... •
I-.-t-t-I- '-1_1_'
'PCR IU.L OBJI!CT •

:p~D~r~g ~S : ••••••• i •••••••••

1
·····J2······· .. ••
'R£CORD STORAGE •

:O:J~R:g~~ :
'PRIIIT COMPIL!~ •
• STATISTICS •
••• f l •••••••••••••

L ________ _

I. .'
I •• '

"." I '" ·0)······· .. ·· 'P:H SP AAG-FF"A.2'
• - 1- t-I-I-t-t-I-I
• pca SUBPRGR ARc;'
• I.IST~ RECORD •
• l<LD !NFO • • ••••••••••••• 'II"

1<----------
G040J ! ·····El·········· 'PCB GBL SP-FGA2 o

.-.- .-e-e-e-e-. -.
o PCH SUBPRGR •
• ADOR IUfO RCO •
• RLD INFO •

"".. 1 ·····Fl·········· 'PCH LIB RL-F&A2 •
.-t-e-e-.-e-e_*_ •
• COMPL SUBPRGR •
• ADDRESSES AND •
• RECORD RLD •

I
G040C, 0 ·····Gl·········· 'PCB I'.OCOH-FIA2 •

• -.- .-e_e_e_e_e_.
- PCB ADR CONST •
'''NO RECORD RLD •
• INFO •

"". I ·····B)·········· .PCB R1.O RL-FJA2'
.-e-e-e_e_e_e_e_.
• POIICB OBJ£CT •
:MOD R1.O CMOS :

",,. 1
••••• J) ••••••••••
'PCB EMD co-Fltr.2' .-.- .. -.-.-.-.-.-.
:~~LI ~~IRo: ·

1 ______ -------

I
-----------b

: •••• H" ••• ·.····: . .
:RELEI.SE ROLL:,

o •
I q ... ·C4·········

o CHART OJ •

• A2
TO INVOCATIOtol
PHASE

Section 2: Compiler Operation 113

Chart FA.

114

PUNCH CONSTANTS AND TEMP STORAGE

G0382
····A2········· • PUNCH TEMP •

• AND CONST ROLL •
• •

v
·····82······.··· •
• INITIALIZE
• LOCATION •
• COUNTER AND TXT.
• CARO •

V
• •••• C2·· •••••••• · . • INITIALIZE •
• PDINTER TO TEMP •
• AND CONST AOLL •
• TOP ~

: .::. :->1 · . •••• v '038201 ... 02 .. . - -. ······03···········
•• ROLL •• YES • PUNCH

ANY PARTIAL
CARD

• •• PROCESSEO •• ----> -. .. -. .--.. -r
v

·····E2·········· • • • • •
INCREMENT

POINTER
· • • •

v F2········v • •• OVE NEXT GROUP.
• ~RO. ROLL TO •
• BUFFER. PU~CH •
• IF CARO •
• COMPLETE • •••••••••••••••••

I
v

•••• • • · 02 • ·

• •
•••••••••••••

V

····E3········· • •
RETURN •

• • •••••••••••••••

PUNCH PART JAL
TXT CARD

Chart FB. PUNCH ADR CONST ROLL

G0383

···· ... 2········. · . • PUNCH ... DR •
• CONST ROLL • •••••••••••••••

V

·····B2·········· • DETERMINE BE- •
• GINNING ... DR OF •
• TEMPOR ... RY STG •
• ... ND CONST •
• ... RE... •

;"::';-,1
.. .. I
•••• v

,038301 •••
C2 ••
.... ····C3········· •• D ... T... •• NO. •

•• ON ... DR CONST •• -------->. RETURN •
•• .4

. .
* •• *

• YES

I
V

·····02·········· • INITIALIZE •
• LOC ... TION •
• COUNTER FROM
• POINTER ... NO
• BEGINNING ... OR •

I
I
V

·····E2·········· • PL ... CE ... RE... •
CODE FROM
... DR CONST

• ROLL ON
• RLD ROLL •

I
V F2·········· •

• SET LOC CTR •
.INTO RUNG 1 OF •
• RLD ROLL •
• •

I
I
v

·····G2·········· • PUT LOC ... TION •
• FROM ... DR •
• CONST ROLL •
• IN OUTPUT •
• ... RE'"

v
·.····H2···········

• PUNCH P ... RTI ... L •
C ... RD

•
.............

I
v · .

• C2 • ·

•

...............

WO TO TXT C ... RD

PUNCH PARTIAL
TXT C ... RD

•

Section 2: Compiler Operation 115

Chart FC.

116

PUNCH OBJECT CODE

(,0384

••• *11.2· ... •••••••
* *

PIJNCH
* COOE ROLL *

I

I
I

I
I
1/ ·t32·········· * INITIALIH *

LOCAT ION
COUNTER.
COOE ROLl

• POT NTER •
I

• •••• • I
* <-2 *->1

• * I v ...
C2 *. ······C3···········

• "OAT A 5 TILL •• NO • PUNCH ANY
RE~AINING

*PART I AL CARD •
•• TO BE • *---->

·.PROCE ssEO.*
*. •• .. . -

* YES

I
I
" .•.. -D?··· ... •• ••.•

• Gf T ..
• NF;. T

INsTW!CT ION

...
E2 ..

• *

I
I
1/ ····03········· * *

RETU"",
*

: •••• (3 ••••••••• :

... A ... YES. •
. STATEMENT .--->.STORE IT IN STA.

1 •• NUMBER NUM ..
*.

... •• ••••••••••••••••• v
.. NO ••••

• *.
F 2 •• ·· ... Fl···········

· .
• C2 • · .

· . .. e4 • · .
I
1/ ...

a4 *. • •••• 85 ••••••••••
.*ADDRESS*. .. • o. CONSTANT •• YES • STORE

*0 DEFINITION • *----> * LOCATION
•• •• • COUNTER
.. • .. • •• * •••••••••••••••••

LNO J
1/ ...

C4 •• • •••• es •••••••••• o. A .0 * DEFINE LABEL *
•• LABEL *. YES * ON BRANCH •

0 INSTRUCTION 0.-----> TABLE ROLL 1= *
•• •• • NECESSARY PUT • .0 .• * IN LIS T AREA •

.0* '~O •••••••• j•...
I · .~ .. *
" • C2 • ······04··········· ..

o ~Ol/E I"'STR TO •
OUTPUT AREA

.PUNCH IF FULLo
I
v

o •
• C2 0 o 0

••• •• F •••••••••••
• REINITIALIZE 0

•• A •• y£ s • PUNCH ANY
REMAINING

-PART I AL CARD -

• .LOCATION COUNTRo
•• PROGRA~ ~REAK •• ------->

*.
---->. TO 1 ST FULL *1

.WORO AFTER TEMPO
• + CONST AREA -

. " .
('2 ····G3··········· . .

•• * 0 YE S -~OVE TO OUTPUT *
*. A CONSTANT .-----> AR[A PUNCH IF -,

•• *..* *CARO CO~PLETE- I ••••••••••••• v
" NO

0*.
HZ -. . ' .. ······HJ····· .. ···· ~OVE DATA TO

•• AN '. YE S - OUTPUT AREA

. ... - .
- C2 *
• *

•• IN'>TRU('ION •• ---> PUNCH IF
•• •• COMPLETE "I

o.
• NO
I

I
I
v

." .

f
1/

- -- cz -· .
J2 * • ······J3···········

• * E5 •
".LIST FLA(, ON 0-----> LIST CODE

*. .•
• NO
I
I
1/ "

• 84 •
o *

I
v - .

• 84 •
* •

••••••••••••••••• v
• 0

• C2 •
* •

Chart FD.

SWEEP BASE
iJRANCH I~OLL

PUNCH BASE TABLE

G0399

****A2******···
PUNCH

BASE ROLL

...............
I
I
I

1
v

~~~:=a2===----w-· . INITIALIZE 
BASE TABLE * 

LOCATION • 
COUNTER ................. 

I 
I 

I 
I 
V 

··*··C2····*·**·· · . * INITIALIZE • 
• POINTER TO BASE* 
• TABLE ROLL • 
* • 
•••••• ** ••••••••• 

1 
I 
1 
V 

··***02··*·*·*··* 
* • 
* INITIALIZE • 
.TXT CARD OUFFER. 
* • 
...............•. 

I 
** •• ** I 

* E2 *->1 
* * I v 

G0400 .*. 
E2 .. * • .. ······E3··········· 

• * ALL •• YES • PUNCH • 
*. ROLL •• --------> ANY PARTIAL 

•• PROCESSED.* CARD 
*. .* 

* •• * 
• NO 
I 
I 

I 
v 

·····F2·········· 
* INCREMENT • 
• POINTER TO ROLL. 

................. 
I 
I 

I 
I 
I 
V 

·**··G2***·***··* 
* RECORD ESD * 
* + LOC COUNTER * 
* ON RLD ROLL * 

................. 
1 

I 
1 
V 

·····H2·········· · . * MOVE GROUP TO * 
*BuFFER PUNCH IF* 
* CARD COMPLETE • · . ................. 

I 
I 
I 
V .... 

* • 
• E2 * 
* * 

•••••••••••• * 

I 
I 
V 

··.·F3········· * • 
RETURN • 

* • ............... 

section 2: Compiler Operation 111 



Chart FE. 

S.EEP BASE 
BRANCH ROLL 

118 

PUNCH BRANCH TABLE 

G0400 

··· .. A2········· 
• PUNCH • 

BRANCH ROLL 

............... 
I 

I 
I 
I 

I 
V 

·····B2·········· · . • INITIALIZE 
• BRANCH TABLE 

LOC COUNTER • 
• ................. 

I 
I 

I 
V 

·····C2······.··· · . • INITIALIZE • 
• POINTER TO • 
• aRANCH TABLE • 
• ROLL • ................. 

I 
I 
V 

·····02·········· · • INITIALIZE 
.TXT CARD BUFFER. · . • ................. .... , 
: E2 :->1 
• • I •••• V 

11040001 ••• 
E2 .. ... ... 

•• ALL •• YES 
······E3··········· 

•• ROLL •• --------> 
PUNCH 

ANY PARTIAL 
CARD ·.PROCESSEO.· ... . .. ... . .. 

• NO 
I 

I 
I 
V ·· •• ·F2······· ••. · . • INCREMENT • 

• POINTER TO ROLL. 

................. 
I 

I 
I 

I 
V 

·····G2·········· 
• RECORD ESD • 
• ANO LOC COUNTER. 
• ON RLD ROLL • 

................. 
I 
I 
V 

·····H2········.· MOVE 
• GROUP TO 
• BUFFER, PUNCH • 
• IF CARD • 
• COMPLETE • ................. 

I 
I 
I 
V .... . . 

• E2 • . . 

. ........... . 
I 
I 

I 
I 
V 

····F3········· . . 
• RETURN • 

............... 



Chart FF. PUNCH SUBPROGRAM ARGUMENT LISTS 

G0402 

· .. ·A2········· • PUNCH • 
s~::;aG ~;:;:G 

• ROLL ............... 
I 
I 

! 
v ·····82·········· "INITIALIZE LOC." 

• COUNTER. TXT " 
" CARD OUTPUT • 

AREA AND 

••••• :~!~!~~ •••• : 
" •••• " I 
: C2 :-> I 
•••• V 

140201 ••• 
(2 *. ... ... ······Cl····.··.··· 

.:~ R~tt =:.-'''-''---> FUNC,., ANT 
REMAINING 

.PARTIAL CARD. •• PROCE SSED •• 
*. • .. ... ... 

• NO 

I 
I 
V ·· .. ·oz·········· · . 

• INCREMENT • 
:POINTER TO ROLL: · . ................. 

I 
v ... 

. ........... . 

I 
v .. ····03········· .. 

RETURN 

E2 *. • •••• El •••••••••• 
•• • • • MOVE GROUP • 

•• •• YES • TO TXT 

•••• GROUP=O •••• ------->: 0~0~~~ ~~E'" :~ 

*. * •• *.* :.~::~.~~::~~!~.: ! 
• NO 

• 40203 ••• 
F 2 ... .. •••• F 3* ......... . 

• * ... .. .. 
•• TEMP •• YE 5 • COMPUTE 

*. AND CONST .----->" APPROPRIATE 
-. POINTER ." • LOCATION 

*. • .. 
* •• * ••••••••••••••••• 

• NO 

I 
1040204 V 

: •••• G2 ••••••••• : 

COMPUTE 
APPROPRIATE 

LOCATION 

I 
I 
j< __ ---.J 

v ·· .. ·HZ·········· · -- . 
"RECORD RLD I NFO* .. .. 

I 
v ·····J2·········· .. . 

• INSURE 
'MINUS' TAG 

MARK 

I 
v .. ··.·K2·········· · . 

• MOVE " 
"DATA TO OUTPUT .-, 
• ARE A • I 

I 
••••••••••••••••• v .... . . 

.. C2 .. .. .. 

. .. 
.. C2 .. . .. 

PUNCH 
PART IAL 
TXT CARD 

Section 2: compiler Operation 119 



Chart FG. 

120 

PUNCH SUBPROGRAM ADDRESSES 

.... A2········· 
PUNC" 

• GLOBAL SPPO(' 
ROLl ............... 

.... *ti2····· ••... 
o " 

fL t P THf 
• CL OBAL SP~O(, 

• UOLL 

.0. 
(2 •• '. ····C3·· ...... . 

OA T A NO' • 
I. ON f'-if ~OLL .*--->* RETURN • 

'. .' . 
.0 

'. .' 
" YES 

.... aD?··.······· o 0 

TURN UFF 
'-,\JHPf.Jn('''''A~ 

af-l AL. Mf)Vt .ORn-
• Of f • ................. 

1 
1 

I 
1<--
1 

• 040 III I V 
•••• If ;? ••••••••• 
o 0 

"';Vf I SO 
• NUMtlf ~ TO RL[) • 
• 1-40t L • 

1 
I 
I 
I 
I 
I 
V 

•••• IF '2 •••••••••• 

Of Tf "" I N[ 
L D( A T I ON OF " 

• SlJL3PGM ADORE <;S • 
o 0 ................. 

• 0. 

G2 '. 
O • 

• ' '. Yf S 
l.c-,UtiPHOG. FL AC,. 1--, 

o. ON ." I 
o. .0 I 

' •• ' V 

I 

I 
I 
V 

NO 

.... IH2·········· 
<,TORf 

LOCAT I ON IN 
o LaC. COUNTER 
o ................. 

..... J2·········· o • 
INITIALIZE 

• OUTPUT AR( A. 
° TURN ON ° SUI:lPROG. FLAG 0 ................. 

o 0 

• a4 • 

" " 

.... 
o 0 

• B4 • 

1040302 

. 
• [;0\ • 
o 0 

.... art.·········· o 0 

5 TORf 0 

OLOCATION ON RLOO 
• QOLL • ................. 

I 
I 
I 
I 

I 
10403011 V . .. ··c.·· ....... . 

• MOVE " 
o 0 TO OUTPUT 0 

"AREA. PUNCH IF 0 

• CARD CDMPLE: TE 0 

" 0 ................. 
I 
V ... 

iJ4 •• ······05····· ..... . .. .. 
•• OAT A •• NO • 

". ON THE nOLL .0 ___ > 
o. .0 

•• .* .. .. 
° YES 

J 

PUNCH 
ANY PART I AL 

CARD . 

····[5···· ..... 
.0 

RE TURN 



Chart FH. COMPLETE ADDRESSES FROM LIBRARY 

GO.O • 

•••• A.2········· 
• PUNCH USED • 
• LIBRARY 
• ROLL • ............... 

I 
V ·····82·········· · . 

• THE ~~~~ LI B 
• ROLL · 

I 
v o. 0 

(2 •• 

.* *. ···.CJ··.······ • it •• NO. • • 0 DATA ON THE 0.--->. R(TURN 
•• ROLL •• • 
*..* ••••••••••••••• 

it •• * 
• YES 

I 
I 

. ... · . 
• B •• · . 
I 
V ·····s,,·········· · . • STORE • 

.LOCATION ON RLO. 

• ROLL • . ................. 
I 
V 

••••• r •••••••• ••• 
-MOVE • 

• 0 TO ouTPUT • 
.AREA. PUNCH IF • 
: CARD COMPLETE : . ............... . .... I · . • O •• -> · . •••• v 

V t "0.0'' ••• ·····02·········· • TURN OFF • 
• SUBPROGRAM • 
.FLAG. MOVE WORD. 
• OFF ROLL • 

I 
• •••• • I 

• f2 -->t 
• • I 

v 
,·0 

[2 *. • •••• E3 •••••••••• .. .. . 
0 0 (<;0 .0 YES • MOVE NEXT • 

•• = ° (IGNORE) 00---->. WORD OFF + .--, •. o· • DESTROY • I 
•• • • I .. .. ............ ..... " 

I 
I 
I 
I 
I 

'''0''07 V 

NO 

•••• eF 2 •••••••••• · . o MOV[ 0 

o E SO NUMBER TO 0 

o RLD ROU 0 

I 
I 

I 
I 
I 
'I ·····G2·········· 

• 0 DETERMINE 
LOCATION OF 

FUNCT ION 
• AOOkrss • ......... ....... . 

J 
I 

I 
V .0. 

H2 *. .. . . 
• * •• YES 

o.SUBPROGR FLAG.o--, 
o. 0"1 •• I 

o. •• I 
•• •• v 

• NO •••• 

I 
I 
I 
I 
V ... ··JZ·········· o • 

o STO~E • 
• LOCATION IN LaC. 
• COUNTeR 0 

I 
I 

I 
v .. ···9<.2·········· o INITIALIZf 

o OUTPUT ARE A 0 

· . 
• B4 • 
o 0 

• TUnPII ON *--, 
: SUBPROGRA" F LAC.: I 
•• ••••••••••••••• v .... · • 8_ • 

• 0 

.... · . 
• 04 • · . 

04 *. ······05··········· .* *. •• *. NO • PLINCH 
ANY PARTI AL 

CARD 
•• DATA ON THE .0---> 

•• ROLL •• 
•• .* .... 

• YES 

I 
V .... 

o • 

• E.l. • · . 

section 2: 

I 
I 
V ····ES········· . . 

RETURN • 

Compiler Operation 121 



Chart Fl. 

122 

PUNCH ADDRESS CONSTANTS 

(;0405 

····A2·**······ · . PUNCH • 
• ADCON ROLL • ............... 

I .... , 
: 62 :->1 · . •••• v ... 

82 •• .. .. 
.* *. NO 

• .DATA ON ROI_L •• ---->. 
* • .* .. . . 

... • * 
• YES 

I 
v 

·····C2·········· · . SET AREA • 
• CODE FROM ~AST • 
• WORD ON ROLL • · ................. 

I 
I 
'I 

·····02·········· • SET ADDRtSS • 
• WHERE CaNST 
.15 TO BE LOADED • 
• FROM NEXT WORD • 
• ON ROLL • ................. 

I 
I 
I 
v 

······E2··········· 
MOVE INFO 
TO OUTPUT 

AREA AND PUNCH • 

............. 
I 
I 
I 
V 

·····F2·········· · SET • 
UP RLD ROLL • 

ENTRY • 

................. 
I 

I 
V · . 

• B2 • · . 

····1:13········· 
~FTURN . ............. . 



Chart FJ. PUNCH RLD CARDS 

GO~6~ 

••••••••••••••• : ••••• 2 ••••••••• : 

" OROER AND" "SORT " 
PUNCH RL.D ,,- --->" RL.D CARDS ON " 

" """" .. ~~~~"" """" " "ROL.L. : ................. 

PuNCH "LO 
ROLL " B2 

" 

I 
,41615 V ·····82·········· "SET ESO NU"'BER " 

"FRO'" AREA CODE " -->" AND PUT IN " 
" RL.O CARD 

: ..... !::~~ ..... . 
I 

, 
'4160 I V •• ···C:l· •• ••••••• 

" SET " 
" .. L.AST L.OAO .. 
" C2 '-->" ADDRESS FRO'" " 
" ' "RLD GROUP " ........•........ 

, 
v .". 

02 ". •• *. 

i~iR i~r .~~~z L.IKE 
ESD NUMBERS TOGETI1ER. 
AOR. CONST ANO 
TE"'P AND CONST ROL.LS 
ARE USED AS TEMP 
STORAGE 

······OJ··········· 

'" 1603 

.... 
" " " 5S " 
" " .... 

I 
I 
V 

.* • 
t:S5 •• 

.-e _ •• 

• * *. YES 

... :~:: ON C::~ .. '''---', .. .. ' 
" NO 

I ! 
i I 
V I 

······C~··········· I I 
I 

I 
PUNCH A,. RL.O 

.. CARD 

!< ____ J 
'41 t>04 v ·····D!.·········· "PL.ACE PHEvlOvs .. 

.* *. NO • PUNCH 
RE"'AINING 

DATA 

• VAL.UE IN CARC * 
".MORE DATA ON ."-------> 

*. ROLL .-a. ._ 

a •• * i YES 

V 

." . 
E2 ". 

• * e. 
• " ESO NO = '" NO 

". TO PREVIOUS ' '', *. .-
a. .* 

••• * V 
• YES •••• 

L ..... · 
• •• 85 • >: E4 : •••••• .... 

, 
I 
I 
V ····E3·· .. ·· .. · 

" " " RETURN 

," , 
E" •• .. . . 

.* •. YE..S 
r-)* .ROOM ON CA~O • *--, 
f *... .... I 
I " •• " I 

•••• • NO I 

• "'A"'KEO FOR NO .. 
• CONTINUATION .. 
* AN6 UPDATl • ................. 

. ... 
l5 •• 

.* ROOM '. 
YES .-FOR HE. 1:.5D'. 
r-*. NO. ON CARD .* 
I •••. • ••• 
v ' •• ' 

" NO ".. I 1* * 
" E4 * 1* ti2 * • • 1* • 

I 
I 
I I I " ...... I 

V I ··.···F.·······.··· I 

PUNC,", AN RLO 
• CARD 

I 
I 
I 
I ••••••••••••• I 

I I 
1 < ___ J 

I 
• 41602 Ii ·····G,,·········· "PL.ACE PR[VIOUS * 

* YAL.UE IN CAkD .. 
" "'A~KEC. FOR " 
"CONTINUATION " 
" AND UPDATE " ................. 

1 
I 
V .... 

" " .. C2 .. 
.. * 

section 2: 

Y ..... FS·········· 
* * .. 
• SAVE N[W [SO 
• NO. 

I 

I 
I 
I 
I 
V .. ····GS··········· 

PUNC,", A,. RL.D 
• CARi) 

. ... 
" " 
" C2 • . " 

Compiler Operation 123 



chart FR. 

124 

PUNCH END CARDS 

····"'2········· -PUNCH 
END CARD ............... 

I 
1/ 

·····82·········· - -. 
-SET UP END CARD-

- -· ................. 
I 

I 
I 
I 
I 
1/ 

······r2··········· 
PUNCH END CARD . 

····02········· · -RfTURN · ............... 



Chart FL. PUNCH NAMELIST TABLE POINTERS 

G0564 

II •• ft. A~t~:~: ...... 
• NAMELisT MPY 
• OAT" 

.ft ............. . 

.. . 
B2 •• ... ... . ... ·B3········· 

... 0'" TAo ON ... NO" .. 
•• NAMEL 1ST MPY •• ---->. RETURN 

-.OATA ROLL.- .. .. ....ft ••••••••••••••• .... ... 
• YES 

I 
V ·····C2·········· · . .CALCULATE NEXT. 

• ADDRESS IN • 
• TEMPORARY • 
• STORAGE AREA ................. 
.... I · . 

• 02 .-> · . .. .. 
,056401 1/ ·····02·········· • MOVE LOCATION. 

• OF PO INTER • 
.. FRO'" ~AMELJ';T ... 
... [tI4PY DATA .. 

: ••••• :~~';. ft ...... 

.. . 
E2 0. . . 

... ... NO .. 
····E 3 ••.•••.•• 

ft. ANYTHING • ft ___ > * RETURN 
... MOVED ... .. 

ft. • •••••••••••••• ... . .. 
.. YE. S 

•••• ftf- I •••• ft ...... · . *,,,,,TTAl!lf TXT .. 
• CARD TO LOAD • 
.. LI1CltrlON 
• INOI' ATfO .................... 

ww·_ .. t-:',c· ••••••••• 

• Sf T " 
" uP RLD ENTRY " 
" FOR WORD IN • 
*NAMf:L I ST TABLE .. 

" . 
..... ~, .... ft ......... ft. 

·····H2······ .... 
" " "MOVE MUL1IPl.ILR" 
• TO TEMP AND 

CONST ROLl 

I 
I 
v ..... ...;2·······,.·· 

" ~nvf .. 
• ~OIN:l~ TO Tx.T .. 
.. ( &.H '.. I M.AG[ .. · .. " .................. ft • 

.. A:4 • 

" " 

· . 
• 84 • · . 

······B4··········· 
PUNCH THE TXT 

• CA~O . ........... . 
I 
I 

I 
I 
V ·····C4··.······· * 

INCREASE 
• TEMPORARY 
.STORAGE POINTER* . . ................. 

* • 
" D2 • 
* * 

Section 2: Compiler Operation 125 



This appendix deals with the POP lan
guage, the language in which the FORTRAN IV 
(G) compiler is written. The parts of the 
appendix describe this language in the 
following way! 

• The ficst part describes the POP 
instructions, which are grouped accord
ing to their functions. 

• The second part describes the labels 
used in the routines of the compiler. 

• The third part discusses the assembly 
and operation of the compiler, as it is 
affected by th~ use of the POP lan
guage. This part ends with a cross
reference list giving the mnemonic for 
each instruction, the hexadecimal code 
which represents it, and the instruc
tion group in which it is described. 

POP INSTRUCTIONS 

For the purpose of describing their 
operation, the POP instructions have been 
divided into groups according to the pri
mary function which they perform. Where a 
particular POP instruction pertains to more 
than one group, it is described in the 
group which discusses its most important 
functions. 

In the descriptions of the instructions, 
the following notational conventions are 
employed: 

1. Parentheses are used to indicate -the 
contents of;- thus (G) stands for the 
contents of storage address G, where 
all addz·esses are fullword addresses. 

2. The arrow is used to indicate trans
mission in the direction of the arrow; 
(G) + 1 --> G reads: the contents of 
storage address G, plus one, are 
transmitted to storage address G. 

3. Wn (n=1,2,3, ••• ) refers to the 
BOTTOM, BOTTOM-1, ••• etc., words on 
the WORK roll. 

It should be noted that in many cases 
the address field, G, of the instruction 
contains a value other than a storage 
address (for instance, a roll name). In 
most of these cases, the symbolic reference 
which is used is defined in the program by 
means of an EQU card. 

APPENDIX A: THE POP LANGUAGE 

The mnemonic codes for the POP instruc
tions are of the form IEYxxx. In the 
following discussion, the characters lEY 
are omitted from the mnemonics in t.he 
interest of ease of reading, and only the 
xxx portion of the code appears • 

TRANSMISSIVE INSTRUCTIONS 

The instructions described in this sec
tion are primarily involved in moving 
information from place to place in storage. 

APH G: Assign and Prune Half 

The upper halfw~rd of (WO) --> the 
lower halfword of G, where G is a 
storage address; the upper halfword 
of G remains unaltered; the BOTTOM 
of the WORK roll· is reduced by 
four, thus pruning WOe 

ARK G: Assign Relative to Pointer and Keep 

(WO) --> P + (G), where P is the 
address defined by the pointer in 
Wi and G is a storage address; the 
BOTTOM of the WORK roll is reduced 
by four, thus pruning the value 
assigned and keeping the pointer. 

ARP G: Assign Relative to Pointer 

(WO) --> P + (G), where P is the 
address defined by the pointer in 
Wi and G is a storage address; the 
BOTTOM of the WORK roll is reduced 
by eight, thus pruning the current 
WO and Wi. 

ASK G: Assign to Storage and Keep 

(WO) --> G, where G is a storage 
address; the BOTTOM of the WORK 
roll is unchanged. 

ASP G: Assign to Storage and Prune 

(WO) --> G, where G is a storage 
address; the BOTTOM of the WORK 
roll is reduced by four, thus prun
ing the current WOe 

BOP G: Build on Polish 

The control driver G is built on 
the POLISH roll, where the G field 
of the instruction is the lower 
eight bits of the ADDRESS portion 

Appendix A: The POP Language 127 



of the desired driver. (The TAG 
field of the pointer contains zero, 
and the OPERATOR field contains 
255.) 

CAR G: Copy and Release 

Copy roll G, where G is a roll 
number, to roll T, and release roll 
G (i.e., restore it to its condi
tion before the last reserve); the 
number T is fonnd in WO; the BOTTOM 
of the WORK roll is reduced by 
four. If roll G is in the reserved 
state when this instruction is 
executed, the instruction sets its 
BOTTOM to (TOP) minus four; if the 
roll is not reserved, BOTTOM is set 
to (BASE). 

CLA G: Clear and Add 

Clear WO; (G) --> WO f where G is a 
storage address; the BOTTOM of the 
wOHK tl)ll is w"!changed .. 

CN'!' G: count 

The number of words on roll G --> 
WO, where G is a roll number; the 
BOTTOM of the WORK roll is 
increased by four. 

CPO G: copy Plex On 

The plex pointed to by the pointer 
in Wo is copied to roll G, where G 
is the number of the target roll, 
except for the first word of the 
plex (which holds the number of 
words in the plpx, exclusive of 
itself). The BOTTOM of the WORK 
roll is reduced by four, thus prun
ing the pointer. The BOTTOM of 
roll G is increased by four for 
each word moved; the BOTTOM of the 
original roll is unchanged. 

CRP G: copy Relative to Pointer 

Copy roll S to roll G, where G is a 
roll number, beginning with the 
group indicated by the pointer in 
WO, to the BOTTOM of the roll. The 
roll number S is also provided by 
the pointer in WOe The BOTTOM of 
roll S is decreased by the number 
of bytes moved. The BOTTOM of roll 
G is increased by the number of 
bytes moved. The BOTTOM of the 
WORK roll is unchanged; thus, the 
pointer remains. 

EAD G: Extract Address 

128 

The ADDRESS portion of (G) --> WO, 
where G is a storage address; the 

BOTTOM of the WORK roll is 
increased by four. 

EAW G: Effective Address to Work 

G --> WO, where G is a storage 
address; the BOTTOM of the WORK 
roll is increased by four. 

ECW G: Effective Constant Address·to Work 

G --> WO, where G is a storage 
address which refers to a constant 
under a constant base. The BOTTOM 
of the WORK roll is increased by 
four. 

EOP G: Extract Operator 

The OPERATOR portion of (G) --> WO 
(right adjusted), where G is a 
storage address; the BOTTOM of the 
WORK roll is increased by four. 

ETA G: Extract Tag 

TAG portion of (G) --> TAG portion 
of WO, where G is a storage 
address; the BOTTOM of the WORK 
roll is increased by four. 

FET G: Fetch 

(G) --> WO, where G is a storage 
address; the BOTTOM of the WORK 
roll is increased by four. 

FLP G: Flip 

Invert the order of roll G, where G 
is a roll nl~er, word for word. 

FRK G: Fetch Relative to Pointer and Keep 

(P + (G» --> WO, where P is the 
address defined by the pointer in 
WO and G is a storage address; the 
BOTTOM of the WORK roll is 
increased by four; thus, the 
pOinter remains in Wi. 

FRP G: Fetch Relative to Pointer 

(P + (G» --> wa, where P is the 
address defined by the pointer in 
Wo and G is a storage address; the 
BOTTOM of the WORK roll is 
unchanged; thus, the painter is 
destroyed. 

FTH G: Fetch Half 

The lower halfword of (G) --> upper 
halfword of WO, where G is a 
storage address; the lower half-



word of WO is set to zero; the 
BOTTOM of the WORK roll is 
increased by four. 

lAD G: Insert Address 

lOP G: 

The ADDRESS portion of (G) --> the 
ADDRESS portion of the pointer in 
WO, where G is a storage address; 
the BOTTOM of the WORK roll is 
unchanged. 

Insert Operator 

G --> OPERATOR portion 
pointer in WO, where the G 
the instruction is the 
OPERATOR value: the BOTTOM 
WORK roll is unchanged. 

of the 
field of 
desired 
of the 

ITA G: Insert Tag 

ITM G: 

LeE G: 

LeF G: 

TAG portion of (G) --> TAG portion 
of the pointer in WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged. 

Insert Tag Mode 

Mode portion of the TAG field of 
(G) --> mode portion of the TAG 
field of the pointer in WO, where G 
is a storage address; the BOTTOM of 
the WORK roll is unchanged. 

Last Character Error 

The last character count and the 
address G --> ERROR roll, where G 
is the address of the message for 
the error. The count of errors of 
the severity. associated with the 
message is increased by one, and 
the MAX STA ERROR t~uMBER (which 
indicates the highest severity 
level of errors for the present 
statement) is updated as required. 

Last Character Error if False 

If (ANSWER BOX) = false, the last 
character count and the address 
G --> ERROR roll, where G is the 
address of the message for the 
error. The count of errors of the 
severity associated with the mes
sage is increased by one, and the 
MAX STA ERROR NUMBER is updated as 
required. If (ANSWER BOX) = true, 
the instruction does nothing. 

LeT G: Last Character Error if True 

If (ANSWER 
character 
G --> ERROR 
address of 

BOX) = true, the last 
count and the address 

roll, where G is the 
the message for the 

error. The count of errors of the 
severity associated with the mes
sage 1S increased by one, and the 
MAX STA ERROR NUMBER is updated as 
required. If (ANSWER BOX) = false, 
the instruction does nothing. 

LGP G: Load Group from Pointer 

Loads the group specified by the 
pointer in Wo into SYMBOL 1, 2, and 
3, DATA 0, 1, 2, 3, 4, and 5. The 
number Gis the number of bytes to 
be loaded; if G=O, the entire group 
is loaded. The BOTTOM of the WORK 
roll is unchanged; hence, the 
pointer remains in WOe 

LSS G: Load Symbol from Storage 

Loads the (G and- G+4), where G is a 
storage address, into SYMBOL 1, 2, 
and 3, and DATA O. -

MOC G: Move on Code 

G halfwords, where G is an even 
number, are to be moved from the 
WORK roll to the CODE roll. A word 
containing a special value in the 
first two bytes and the number of 
words transferred in the last two 
bytes are first placed on the CODE 
roll. G/2 words of information are 
then moved from the WORK roll to 
the CODE roll; the BOTTOM of the 
CODE roll is increased by four for 
each word placed on the LU~~; the 
BOTTOM of the WORK roll is reduced 
by four for each word moved from 
the roll. A location counter is 
increased by the number of bytes of 
object code placed on the roll. 

MON G: Move on 

(WO) --> roll G, where G is the 
roll number; the BOTTOM of roll G 
is increased by four; the BOTTOM of 
the WORK roll is decreased by four. 

NOG G: Number of Groups 

NOZ G: 

The number of groups on roll G --> 
WO, where G is the roll number; the 
BOTTOM of the WORK roll is 
increased by four. 

Nonzero 

A nonzero value --> G, where G is a 
storage address. 

Appendix A: The POP Language 129 



PGO G: Place Group On 

A group from SYMBOL 1, 2, and 3 and 
DATA 0, 1, 2, 3, 4, and 5 --> roll 
G, where G is the roll number, by 
group status; the BOTTOM of roll G 
is increased by group size. 

PGP G: Place Group from Pointer 

The group in SYMBOL 1, 2, 3, DATA 
0, 1, 2, 3, 4, and 5 is placed on a 
roll according to the pOinter in 
WOe The number G is the number of 
bytes to be moved; if G=O, an 
entire group is moved: the BOTTOM 
of the WORK roll is unchanged. 

PLD G: Precision Load 

(G and G+4) --> MPAC 1 and MPAC 2, 
where G is a storage address. 

PNG G: Pointer to New Group 

Builds a pointer to the first byte 
of the next group to be added to 
roll G, where G is the roll number, 
and places the pointer in WO; the 
BOTTOM of the WORK roll is 
increased by four. 

POC G: Place on Code 

The data located at storage address 
G+4 and following is to be moved to 
the CODE roll. The number of half
words to be moved is stored in 
location G and is an even number. 
A word contairiing a special value 
in the first two bytes and the 
number of words of data in the last 
two bytes--rs- first placed on the 
ceDE roll. The indicated data is 
then moved to the CODE roll, and 
the BOTTOM of the CODE roll is 
increased by four for each word 
placed on the roll. A location 
counter is increased by the number 
of bytes of object code placed on 
the roll. 

PST G: Precision Store 

(MPAC 1 and MPAC 2) --> G and G+4, 
where G is a storage address. This 
instruction performs a doubleword 
store. 

SWT G: Switch 

130 

Interchanges (WO) and (G), where G 
is a storage address; the BOTTOM of 
the WORK roll is unchanged. 

ZER G: Zero 

o --> G, where G is a storage 
address. 

ARITHMETIC AND LOGICAL INSTRUCTIONS 

The following instructions are primarily 
designed to perform arithmetic and logical 
manipulations. 

ADD G: Add 

(G) + (WO) --> WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

AFS G: Add Four to Storage 

(G) + 4 --> G, where G is a storage 
address. 

AND G: And 

(G) AND (WO) --> WO; that is, a 
logical product is formed between 
(G) and (WO), and the result is 
placed in WOe The BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of Wo are 
destroyed. 

DIM G: Diminish 

(G) - 1 --> G, where G is a storage 
address. 

DIV G: Divide 

(WO) / (G) --> G, where G is a 
storage address; the remainder, if 
any, from the division is lost; a 
true answer is returned if there is 
no remainder; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of Wo are 
destroyed. 

lOR G: Inclusive Or 

The inclusive OR of (WO) and (G), 
where G is a storage location, 1S 
formed, and the result is placed in 
WOe The BOTTOM of the WORK roll is 
unchanged; hence, the initial con
tents of Wo are destroyed. 

LLS G: Logical Left Shift 

(WO) are shifted left G places; the 
result is left in WO; bits shifted 
out at the left are lost, and 
vacated bit positions on the right 
are filled with zeros. 



LRS G: Logical Right Shift 

(WO) are shifted right G places; 
the result is left in WO; bits 
shifted out at the right are lost, 
and vacated bit positions on the 
left are filled with zeros. 

MPY G: Multiply 

(G) * (WO) --> WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

PSP G: Product Sign and PrQ~e 

The exclusive OR of (WO) and (G), 
where G is a storage location, 
replace the contents of G; the 
BOTTOM of the WORK roll is reduced 
by four, thus pruning WOe 

SUR G: Subtract 

(WO) - (G) --> WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

TLY G: Tally 

(G) + 1 --> G, where G is a storage 
address. 

DECISION MAKING INSTRUCTIONS 

These instructions inspect certain con
ditions and return either a true or false 
answer in the ANSWER BOX. Some of the 
instructions also transmit stored informa
tion from place to place. 

CSA G: Character Scan with Answer 

If G = (CRRNT CHAR), the scan arrow 
is advanced and a true answer is 
returned; otherwise, the scan arrow 
is not advanced and a false answer 
is returned. 

LGA G: Load Group with Answer 

The group from the BOTTOM of roll 
G, where G is the roll number and 
roll G has been flipped, is loaded 
into SYMBOL 1, 2, 3, DATA 0, 1, 2, 
3, 4, and 5 (as many words as 
necessary); if the roll is empty or 
if the group is a marker symbol, a 

false answer is returned; other
wise, a true answer is returned; 
the BOTTOM of roll G is reduced by 
group size. 

MOA G: Move off with Answer 

If roll G, where G is the roll 
number, is empty, a false answer is 
returned. Otherwise, the BOTTOM of 
roll G is reduced by four, pruning 
the word moved; the BOTTOM of the 
WORK roll is increased by four; a 
true answer is returned. 

QSA G: Quote Scan with Answer 

If ~~e quotation mark (sequence of 
characters) beginning at storage 
address G (the first byte in the 
quotation mark is the number of 
bytes in the quotation mark) is 
equal to the quotation mark start
ing at the scan arrow, advance the 
scan arrow to the next active 
character following the quotation 
mark, and return a true answer; 
otherwise, do not advance the scan 
arrow and return a·false answer. 

SAD G: Set on Address 

If G ADDRESS portion of the 
pOinter in WO, return a true answ
er; otherwise, return a false 
answer. 

SBP G: Search by Stats from Pointer 

Search the roll specified by the 
pointer in WO, beginning with the 
group following the one specified 
by the pOinter for a group which is 
equal to the group in the central 
items SYMBOL 1, 2, 3, etc., accord
ing to the group stats values 
stored at locations G+4 and G+8 
(these values are in the same order 
as those in the group stats 
tables). The roll number multip
lied by four is stored at location 
G. If a match is found, return a 
true answer, replace the pointer in 
WO with a pointer to the matching 
group, and continue in sequence. 
If no match is found, return a 
false answer, prune the pointer . in 
WO, and continue in sequence. This 
instruction is used to continue a 
search of a roll according to group 
stats values other than those norm
ally used for the roll. 

SBS G: Search by Stats 

If the roll, whose number multip
lied by four is in storage at 
location G, is empty, return a 

Appendix A: The POP Language 131 



false answer. Otherwise, search 
that roll against the central items 
SYMBOL 1, 2, and 3 and DATA 0, 1, 
2, 3, 4, and 5, as defined by the 
group stats values stored at loca
tions G+4 and G+8 (these values are 
in the same order as those in the 
group stats tables); if a match is 
found, place a pointer to the 
matching group in WO, increase the 
BOTTOM of the WORK roll, and return 
a true answer; if no match is 
found, return a false answer. This 
instruction is used to search a 
roll according to group stats 
values other than those normally 
used for that roll. 

SCE G: set if Character Equal 

If G = ..(CRRNT CHAR), return a true 
answer; otherwise, return a false 
answer; in neither case is the scan 
arrow advanced. 

SCK G: Set on Character Key 

If (CRRNT CHAR) displays any of the 
character keys of G, where G is a 
character code whose bit settings 
describe a group of characters, 
return a true answer; otherwise, a 
false answer is returned; in neith
er case is the scan arrow advanced. 

SFP G: Search from Pointer 

Search the roil specified by the 
pointer in WO, beginning with the 
group following the one specified 
by the pointer in WO, for a group 
which is equal to the group in 
SYMBOL 1, 2, 3, DATA 0, 1 ••• , etc., 
by roll statistics. If a match is 
found, return a true answer, 
replace the pointer in WO with a 
pointer to the matching group, and 
jump to G, where G must be a local 
address. If no match is found, 
return a false answer, prune the 
pointer in Wo (reduce the BOTTOM of 
the WORK roll by four), and con
tinue in sequence. 

SLE G: Set if Less or Equal 

132 

If (WO) ~ (G), where G is a storage 
address, a true answer is returned; 
otherwise, a false answer is 
returned. The comparison made con
siders the two values to be signed 
quantities. 

SNE G: Set if Not Equal 

If (WO) * (G), where G is a storage 
address, a true answer is returned; 
otherwise, a false answer is 
returned. 

SNZ G: Set if Nonzero 

If (G) * 0, where G is a storage 
address, return a true answer; 
otherwise, return a false answer. 

SOP G: Set on Operator 

If G = OPERATOR portion of the 
pointer in WO, return a true answ
er: otherwise, return a false 
answer. 

SPM G: Set on Polish Mode 

If the mode portion of the TAG 
field of the (G) = the mode portion 
of the TAG field of the pointer in 
Pl, where G is a storage addess, 
return a true answer: otherwise, 
return a false answer •. 

SPT G: Set on Polish Tag 

If the TAG field of the (G) the 
TAG field of the pointer in Pl, 
where G is a storage address, 
return a true answer; otherwise, 
return a false answer. 

SRA G: Search 

If roll G, where G is the roll 
number, is empty, return a false 
answer; otherwise, search roll G 
against the central items SYMBOL 1, 
2, and 3 and DATA 0, 1, 2, 3, 4, 
and 5, as defined by the roll 
statistics; if a match is found, 
place a pointer to the matching 
group in WO, increase the BOTTOM of 
the WORK roll, and return a true 
answer; if no match is found, 
return a false answer. 

SRD G: Set if Remaining Data 

STA G: 

If roll G, where G is the roll 
number, is not empty, return a true 
answer; otherwise, return a false 
answer. 

Set on Tag 

If the TAG portion of (G) = the TAG 
portion of the pointer in WO, where 
G is a storage address, return a 
true answer; otherwise, return a 
false answer. 



STM G: Set on Tag Mode 

If the mode portion of the TAG 
field of the (G) = the mode portion 
of the TAG field of the pointer in 
WO. where G is a storaae address. 
return a true answer: -otherwise~ 
return a false answer. 

JUMP INSTRUCTIONS 

The following instructions cause the 
normal sequential operation of the POP 
instructions to be altered, either uncondi
tionally or conditionally. See the sec
tions -Labels· and -Assembly and Operation~ 
in this Appendix for further discussion of 
jump instructions. 

CSF G: character Scan or Fail 

If G (CRRNT CHAR), advance the 
scan arrow to the next active 
character; otherwise, jump to 
SYNTAX FAIL. 

JAF G: Jump if Answer False 

If (ANSWER BOX) = false, jump to G, 
where G is either a global or a 
local address; otherwise, continue 
in sequence. One of two operation 
codes is produced for this instruc
tion depending on whether G is a 
global or local label. 

JAT G: Jump if Answer True 

If (ANSWER BOX) = true, jump to G, 
where G is either a global or a 
local address; otherwise, continue 
in sequence. One of two operation 
codes is produced for this instruc
tion depending on whether G is a 
global or a local label.-

JOW G: Jump on Work 

If (WO) = 0, decrease the BOTTOM of 
the WORK roll by four and jump to 
G, where G is either a global or a 
local address; otherwise, reduce 
word 0 by one, --> WO, and continue 
in sequence. One of two operation 
codes is produced for this instruc
tion, depending on whether G is a 
global or a local label. 

JPE G: Jump and Prepare for Error 

The following values are saved in 
storage: the location of the next 
instruction, the last character 
count, the BOTTOM of the EXIT roll, 
and the BOTTOM of the WORK roll. 

The JPE FLAG is set to nonzero, and 
a jump is taken to G, wbich may 
only be a local address. 

JRD G: Jump Roll Down 

JSB G: 

This instruction manipulates a 
pointer in WOe If the ADDRESS 
field of that pointer is equal to 0 
(pointing to the word preceding the 
beginning of a reserved area), the 
ADDRESS field is increased to four. 
If the ADDRESS field of the pointer 
is equal to any legitimate value 
within the roll, it is increased by 
group size. If the ADDRESS field 
of the pointer indicates a location 
beyond the BOTTOM of the roll, the 
pointer is pruned (tne H(JIWl'OM of 
the WORK roll is reduced by four), 
and a jump is made to the location 
G, which must be a global address. 

Jump to Subroutine 

Return information is placed on the 
EXIT roll; jump to G, which is a 
global address. 

JON G: Jump Unconditional 

QSF G: 

XIT 

Jump to G, which is either a global 
or a local address. One of two 
operation codes is produced for 
this instruction, depending on 
whether G is a global or a local 
label. 

Quote Scan or Fail 

If the quotation mark (sequence of 
characters) beginning at storage 
address G (the value of the first 
byte in the quotation mark is the 
number of bytes in the quotation 
mark) is equal to the quotation 
mark starting at the scan arrow, 
advance the scan arrow to thl first 
active character beyond the quota
tion mark: otherwise, jump to SYN
TAX FAIL. 

Exit 

Exit from the interpreter: the code 
which follows is written in 
assembler language. 

ROLL CONTROL INSTRUCTIONS 

These instructions 
the control of the 
compiler. 

are concerned with 
rolls used in the 

Appendix A: The POP Language 133 



POW G: Prune off Work 

Reduce the BOTTOM of the WORK ~oll 
by four times G, where G is an 
integer, thus pruning G words off 
the WORK roll. 

REL G: Release 

Restore roll G, where G is the roll 
number, to the condition preceding 
the last reserve; this sets BOTTOM 
to (TOP) reduced by four if the 
roll is reserved, or to (BASE) if 
the roll is not reserved; TOP is 
set to the value it had before the 
reserve. 

RSV G: Reserve 

Reserve roll G, where G is the roll 
number, by storing (TOP) (BASE) 
on the roll, increasing BOTTOM by 
four, and setting TOP to (BOTTOM); 
this protects the area between BASE 
and TOP, and allows ascending 
addresses from TOP to be used as a 
new, empty roll. 

CODE PRODUCING INSTRUCTIONS 

These POP instructions construct object 
module code on the CODE roll. Each object 
module instruction constructed results in 
the placing of a 2-word group on the CODE 
roll. The instruction generated, in bi
nary, is left justified in this group. In 
the case of halfword instructions, the 
remainder of the first word is filled with 
zero. The second word contains a pointer 
to the instruction operand, except in the 
case of 6-byte instructions when the last 
two bytes of the group contain the value 
zero. 

BID G: Build Instruction Double 

134 

The instruction indicated by G, 
where G is an instruction number 
which indicates the exact instruc
tion to be generated, is built on 
the CODE roll, where WO contains a 
pOinter to the first operand and WI 
contains a pointer to the second 
operand. The BOTTOM of the CODE 
roll is increased by eight. The 
BOTTOM of the WORK roll is reduced 
by eight; thus, both pointers are 
pruned. A location counter is in
creased by one for each byte of the 
instruction. 

BIM G: Build Instruction by Mode 

The instruction indicated by G, 
where G is an inst.ruction number 
which indicates the class of the 
instruction only. For---example, 
LOAD INSTR as opposed to LE INSTR 
is built on the CODE roll, where WO 
contains a pOinter to the second 
operand. A pointer to the accumu
lator which holds the first operand 
is contained in the variable CRRNT 
ACC. The instruction mode is 
determined by inspecting the TAG 
fields of the pointers; the BOTTOM 
of the CODE roll is increased by 
eight; the BOTTOM of the WORK roll 
is reduced by four, thus pruning 
the pointer. A location counter is 
increased by one for each byte of 
the generated instruction. 

BIN G: Build Instruction 

The instruction indicated by G, 
where G is an instruction number 
which indicates the· exact instruc
tion to be built, is ~onstructed on 
the CODE roll. The WORK roll holds 
from zero to three words of infor
mation required for producing the 
instruction. For instructions 
requiring no operands, nothing 
appears on the WORK roll. For 
instructions requiring one operand, 
a pointer to that operand appears 
in WOe For two operand instruc
tions, a pointer to the first 
operand appears ln WO and a pointer 
to the second operand is in Wi. 
For input/output instructions, Wi 
holds a constant whic~ becomes part 
of the instruction. For storage
to-storage move instructions, W2 
holds the length. The BOTTOM of 
the CODE roll is increased by eight 
to reflect the addition of the 
group. The BOTTOM of the WORK roll 
is reduced by four for each word of 
information found on that roll; 
thus, all the information is 
pruned. A location counter is 
increased by one for each byte of 
the instruction. 

ADDRESS COMPUTATION INSTRUCTIONS 

The POP instructions whose G fields 
require storage addresses may be used to 
refer to WORK roll groups, provided the 
storage address of the desired group is 
first computed. This computation must be 
performed at execution time, since the 
location of WO,for example, varies as the 
program is operated. The instructions in 
this category perform these computations and 
jump to the appropriate POP, which then op
erates using the computed address. 



WOP G: WO pop 

compute the address of the current 
WO and jump to the POP indicated by 
G, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W1P G: W1 POP 

compute the address of the current 
Wl and jump to the POP indicated by 
G, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W2P G: W2 POP 

compute the address of the current 
W2 and jump to the POP indicated by 
G, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W3P G: W3 POP 

compute the address of the current 
W3 and jump to the POP indicated by 
G, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W4P G: W4 POP 

compute the address of the current 
W4 and jump to the POP indicated by 
G, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

INDIRECT ADDRESSING INSTRUCTION 

Indirect addressing is provided for POP 
instructions whose address fields normally 
require storage addresses by means of the 
following instruction. 

IND G: Indirect 

The address contained in the 
storage address INDIRECT BOX is 
transmitted to the POP indicated by 
G, where G is a POP instruction 
which requires a storage address in 
its G field, and a jump is made to 
that POP. The POP WG W operates in 
its normal fashion, using the tran
smitted address. 

LABELS 

In the POP language, storage locations 
containing instructions or data may be 
named W1~n two types of labels, global 
labels and local labels. Global labels are 
unique within each phase of the compiler 
(but not from one phase to another); these 
labels may be referred to from any point in 
the phase. Local labels are· also unique 
within each phase (but not between phases); 
however, these labels may be referred to 
only within the global area (that is, the 
area between two consecutive global labels) 
in which they are defined. 

GLOBAL LABELS 

The global labels which appear on a 
System/360 assembler listing of the compil
er are distinguished from local labels in 
that the global labels do not begin with a 
pound sign. Most of the global labels are 
of the form Gdddd, where each d is a 
decimal digit and the 4-digit value dddd is 
unique for the global label. Labels of 
this form are generally assigned in ascend
ing sequence to the compiler routines. All 
remaining global labels are limited to a 
length of seven characters. 

In contrast, the routine and data names 
used throughout this publication are 
limited only to a length of 30 characters. 
A comment card containing the long name 
used here precedes the card on which each 
global label is defined. In addition, the 
longer name appears as a comment on any 
card containing a POP instruction which 
refers to the global label. 

Example: 

G0336 STA GEN FINISH 
G0336 IEYMOA G0494 MOA DO LOOPS OPEN ROLL 

Explanation: The second card shown defines 
the global label G0336. The first card, a 
comment card, indicates the longer name of 
the routine, STA GEN FINISH. The secqnd 
carq contains a reference to the label 
G0494; the longer form of this label is DO 
LOOPS OPEN ROLL, as indicated by the 
comment. 

Occasionally, several comment cards with 
identical address fields appear in sequence 
on the listing_ This occurs when more than 
one long label has been applied to a single 
instruction or data value. The long labels 
are indicated in the comments fields of the 
cards. 

Appendix A: The POP Language 135 



Example: 

• ACT EST AC TEST 

• ACTEST TESTAC 

ACTEST IEYSOP G0504 SOP FL AC OP MARK 

Explanation: The three cards shown define 
the global label ACTEST. One long form of 
this label is AC TEST, as indicated by the 
comment on the first card. The second card 
indicates that the name TESTAC has also 
been applied to this location, and that it 
also corresponds to ACTEST. 

LOCAL LABELS 

All local labels consist of a pound sign 
followed by six decimal digits. If the 
preceding global label is of the form 
Gdddd, the first four digits are identical 
to those in the global name. The remaining 
two digits of the local label do not follow 
any particular sequence; they are, however, 
unique in the global area. 

The local 
appearance in 
containing a 
instruction. 

Example: 

label 
the 

POP 

is defined 
name field 

or assembler 

by its 
of a card 

language 

• 
G0268 

G0268 PROCESS SCALAR ROLL 
IEYSRO G0432 SRO SCALAR ROLL 

#026811 IEYJOW #026821 
#026802 IEYITA G0359 ITA CEO TAG MARK 

Explanation: The global label G0268 is 
defined by the second card in the sequence 
shown. The next two cards define, respec
tively, the local labels 1026811 and 
#026802. In addition, the third card in 
the sequence contains a reference to the 
local label #026821, which is presumably 
defined elsewhere within the global area 
shown here. 

ASSEMBLY AND OPERATION 

The compiler is assembled with each POP 
instruction defined as a macro. Unless 
-Quick Link- output has been designated to 
the macro by means of the assembler 
instruction SETC 'QLK', the resulting code 

136 

consists of two 1-byte address constants 
per POP instruction. This 16-bit value 
represents an 8-bit numeric operation code 
and an 8-bit operand or relative address. 

The definition of the 8-bit operand or 
relative address varies according to the 
POP instruction used. Roll numbers appear 
in this field for instructions requiring 
them. For instructions which refer to 
storage locations relative to CBASE (see 
-Compiler Arrangement and General Register 
Usage") or to other base addresses, the 
word number relative to the appropriate 
base is used. The format for jump instruc
tions is discussed in the following 
paragraphs. 

When Quick Link is specified, machine 
language instructions are generated for the 
following POP instruction. (See "Assembler 
Language References to POP Subroutines.") 

POP INTERPRETER 

The assembled POP code is interpreted by 
a short machine language routine, POP 
SETUP, which appears with the POP subrou
tines at the beginning of the compiler. 

POP SETUP inspects each pair of address 
constants in sequence, and, using the 8-bit 
operation code as an index into the POP 
jump table, a table which correlates opera
tion codes for the POPs with the addresses 
of the POP subroutines, transfers control 
to the appropriate POP subroutine. 

Thus, on encountering the hexadecimal 
value 081A, POP SETUP indexes into the POP 
jump table (labeled POPTABLE) at the eighth 
byte, counting from zero. The value found 
at this location is 0158 (hexadecimal); 
this is the address, relative to the bdse 
of the POP jump table, of the POP subrou
tine for the POP numbered 08 (IEYSUB). 
When this value is added to the beginning 
address of the POP jump table, the absolute 
address of IEYSUB is produced, and POP 
SETUP performs a branch to that location. 

IEYSUB then operates, using the relative 
address lA (which it finds in general 
register 7, AOOR), and returns via POPXIT, 
register 6; in this case the return is to 
POP SETUP, which then continues with the 
next POP in sequence. The register POPADR 
is used to keep track of the location of 
the POP being executed. 

This sequential operation can be inter
rupted by means of POP jump (branch) 
instructions, which cause an instruction 
other than the next in sequence to be 
operated next. The XIT POP im:;t-,...,·,.,t-ioJ" 



also alters the sequence by causing the 
interpreter to release control, performing 
a branch to the assembler language instruc
tion following the XIT. This device is 
employed to introduce assembler language 
coding into the compiler routines when this 
is more efficient than the use of POPs. 
Assembler language sequences sometimes ter
minate with a branch to POP SETUP, so that 
it may resume the execution of POP 
instructions. 

ASSEMBLER LANGUAGE REFERENCES TO POP 
SUBROUTINES 

In some of the routines of the compiler, 
Lne operation of POP SETUP is bypassed ~y 
assembler language instructions which make 
direct reference to the POP subroutines. 
In these sequences, a pair of machine 
language instructions performs the function 
of a single POP instruction. For example, 
the instructions 

LA ADDR, ONE-CBASE CO, 0) 
BAL POPXIT,FETQ 

accomplish the 
instruction 

IEYFET ONE 

function of the POP 

but bypass the operation of POP SETUP. The 
IEYFET routine, (referred to by its label 
FETQ) returns, via POPXIT, to the next 
instruction. Note that the first instruc
tion of the pair sets ADDR to the correct 
value for the operand of the IEYFET opera
tion; this would be done by POP SETUP if it 
interpreted IEYFET ONE. 

, GLOBAL JUMP INSTRUCTIONS 

The labels referred to in POP global 
jump instructions, jump instructions which 
branch to global labels, always end with 
the character J. These global labels refer 
to the global jump table, a table whose 
fullword entries contain the relative 
addresses of global labels which are the 
targets of branches. Each phase of the 
compiler has a global jump table. The 
table is labeled JUMP TABLE. 

References in POP global jump instruc
tions to the global jump table are 
assembled as relative word addresses in 
that table. Each entry in the table con
tains the address, relative in bytes to 
CBASE, of the label whose spelling is 
identical to that of the global jump table 
entry except that it does not include the 
terminal J. 

Thus, the instruction IEYJUN G0192J is 
assembled as 5002, for example, where the 
global jump table begins: 

r--------, 
G0075J i SAO i 

.--------~ 
G0111J I 752 I 

.--------~ 
G0192J I B02 I 

.--------~ 
I I 
I I 
I I 

On encountering this instruction, POP SETUP 
loads its address field (02), multiplied by 
four (08), into the register ADDR. It then 
jumps to the POP subroutine for I EYJUN. 

The IEYJUN subroutine uses ADDR as an 
index into JUMP TABLE, finding the value 
B02. This value is placed in the register 
TMP and a branch is made to the location 
defined by the sum of the-contents of TMP 
and the contents of CONSTR, which holds the 
location CBASE. Thus, if' the location 
CBASE is lOBO, the location branched to is 
1BB2, the location of the routine labeled 
G0192, and the instruction at that location 
is operated next. 

Since the POP subroutines for global 
jumps branch directly to the target loca
tion, the instruction at that location must 
be a machine language instruction rather 
than a POP. Moreover, all jump target 
routines which contain local jumps must 
reset POPADR to reflect the new location. 
Thus, routines which are jump targets and 
which are written in POPs begin with the 
instruction 

BALR POPADR, POPPGB 

which sets POPADR to the location of the 
first POP instruction in the routine and 
branches to POP BASE, the address of which 
is held in POPPGB. At POP BASE, the 
contents of POPADR are saved in LOCAL JUMP 
BASE, POPXIT is set to the beginning loca
tion of POP SETUP, and POP SETUP begins 
operating. For the sake of brevity, this 
instruction is coded as 

BALR A,B 

in some routines. 

Routines in which the POP instructions 
have been replaced by pairs of assembler 
language instructions and which contain 
local jumps begin with the instruction 

BALR A,O 
or 
BALR POPADR, 0 

Appendix A: The POP Language 137 



instead of 
since the 
desired. 

the instruction given above, 
branch to POP SETUP is not 

Because global jump targets begin with 
this machine language code, it is not 
possible for POP instructions to continue 
in sequence into new global routines. When 
this operation is intended, an IEYXIT or an 

. IEYJUN instruction terminates the first 
routine. 

I LOCAL JUMP INSTRUCTIONS 

POP local jump instructions, jump 
instructions which transfer control out of 
the normal sequence to local labels~ must 
occur in the same global area as the one in 
which the local label referred to is 
defined. 

The address portions of POP local jump 
instructions are assembled to contain the 
distance in halfwords from the beginning of 
the global area plus two to the indicated 
local label. This value is a relative 
halfword address for the target, where the 
base used is the location of the first POP 
instruction in the global area. 

Decimal 
Location Label 

100 G0245 
102 

Symbolic 
Instruction 
BALR A,B 
IEYCLA G0566 

120 #024503 IEYLGA G0338 

140 IEYJUN *024503 

138 

Hexadecimal 
Instruction 

062A 

9A12 

5809 

Explanation: The local jump instruction 
illustrated at location 140 is assembled so 
that its address field contains the loca
tion of the label #024503 (120), relative 
in half words to the beginning location of 
the global area plus two (102). Thus, the 
address field of the IEYJUN instruction 
contains the value 09. 

When the POP local jump instruction is 
interpreted, the contents of the location 
LOCAL JUMP BASE are added to the address 
field of the POP instruction to produce the 
absolute address of the jump target. LOCAL 
JUMP BASE is set to the beginning address 
of the global area plus two as a result of 
the BALR instruction which begins the glob
al routine: this function is performed at 
POP BASE, as described "in "Global Jump 
Instructions." 

When local jumps are performed directly 
in machine language, the relative address
ing described above is also used: in this 
case, however, the base address is in the 
register POPADR as a result of the BALR 
instruction heading the routine. 

POP instruction mnemonics are listed in 
'l'able 8. 



Table 8. POP Instruction Cross-Reference List 
r-------------------------------------------T-------------------------------------------, 

~e~Qni£ Hex Instruction Group I Mnemgnic Hex Instruction Greup I 
ADD 04 Arithmetic/Logical LGA 9A Decision Making I 
AFS BC Arithmetic/Logical LGP 80 Transmissive ! 
AND B4 Arithmetic/Logical LLS 98 Arithmetic/Logical I 
APR A4 Transmissive LRS B6 Arithmetic/Logical I 
ARK 86 Transmissive LSS BO Transmissive 
ARP OE Transmissive MOA SC Decision Making 
ASK 12 Transmissive MOC 9E Transmissive 
ASP 14 Transmissive MON SE Transmissive 
BID 7E Code Producing MPY OA Arithmetic/Logical 
BIM 7C Code Producing NOG 1E Transmissive 
BIN 7A Code Producing NOZ 3E Transmissive 
BOP 60 Transmissive PGO 22 Transmissive 
CAR 1A Transmissive PGP 9C Transmissive 
CLA 06 Transmissive PLD 90 Transmissive 
CNT 1C Transmissive PNG 20 Transmissive 
CPO B2 Transmissive POC 94 Transmissive 
CRP 62 Transmissive POW 16 Roll Control 
CSA 24 Decision Making PSP 92 Arithmetic/Logical 
CSF 26 Jump PST 8C Transmissive 
DIM 8E Arithmetic/Logical QSA 2A Decision Making 
DIV B8 Arithmetic/Logical QSF 2C Jump 
EAD 2E Transmissive REL 64 Roll Control 
EAW 18 Transmissive RSV 66 Roll Control 
ECW 18 Transmissive SAD 6A Decision Making 
EOP 30 Transmissive SBP BA Decision Making 
ETA 32 Transmissive SBS 96 Decision Making 
FET 34 Transmissive SCE 28 Decision Making 
FLP 46 Transmissive SCK 6E Decision Making 
FRK 84 Transmissive SFP A6 Decision Making 
FRP 10 Transmissive SLE 70 Decision Making 
FTH AE Transmissive SNE 74 Decision Making 
lAD 36 Transmissive SNZ 72 Decision Making 
lNO 02 Indirect Addressing SOP 6C Decision Making 
lOP 38 Transmissive SPM A2 Decision Making 
lOR 8A Arithmetic/Logical SPT AC Decision Making 
ITA 3A Transmissive SRA 76 Decision Making 
ITM AO Transmissive SRD 78 Decision Making 
JAF 4A Jump (global) STA 68 Decision Making 

56 Jump (local) STM 3C Decision Making 
JAT 48 Jump (global) SUB 08 Arithmetic/Logical 

54 Jump (local) SWT OC Transmissive 
JOW 4E Jump (global) TLY 42 Arithmetic/Logical 

SA Jump (local) WOP C8 Address Computation 
JPE 52 Jump W1P CA Address computation 
JRD 82 Jump W2P CC Address computation 
JSB 50 Jump W3P CE Address computation 
JUN 4C Jump (global) W4P DO Address computation 

58 Jump (local) XIT 44 Jump 
LCE 00 Transmissive ZER 40 Transmissive 
LCF AA Transmissive 

I LCT A8 Transmissive l ___________________________________________ ~ _________________________________________ _ 

Appendix A: The POP Language 139 



APPENDIX B: ROLLS USED IN THE COMPILER 

This appendix describes each of the 
rolls used in the compiler, giving the 
group size, the structure and content of 
. the information in the group, and the roll 
number. Each roll is described as it 
appears in each of the phases of the 
compiler. This information is useful in 
observing the actions taken by the various 
phases, since a significant portion of the 
work performed by the compiler is the 
construction and manipulation of informa
tion on rolls. 

The rolls are ordered in this .appendix 
as they are in storage, by roll number. In 
some cases, a single, number is assigned to 
several rolls. In these cases, the rolls 
with identical numbers are presented 
chronologically, and the overlay of one 
roll on another indicates that the previous 
roll is no longer required when the new 
roll is used. The group stats values for 
rolls with the same number are always 
identical. 

The roll number is the entry number in 
the roll statistics tables for the appro
priate set of statistics; that is, the roll 
number multiplied by four is the relative 
address of the correct entry in the group 
stats, BASE, BOTTOM, and TOP tables. 

ROLL 0: LIB ROLL 

This roll contains one group for every 
name by which a library subprogram can be 
referred to in the source module. The roll 
is contained in IEYROL and remains 
unchanged in size and in cor.~ent throughout 
compilation. 

The group 
twelve bytes. 

size for the LIB roll 
Each group has the form: 

4 bytes 

is 

r-----------------------------------------, 
I<--------------subprogram--------------- I 
r-------------------T---------T---------·~ 
I-------name-------->I TAG I 0 I 
l----·------T----------t----------i---------~ 
I TAG I flag I no. arguments I l _________ ~ __________ ~ ____________________ J 

The TAG appearing in the'seventh byte of 
the group provides the mode and size of the 
FUNCTION value, if the subprogram is a 
FUNCTION. The TAG in byte 9 indicates the 
mode and size of the arguments to the 
subprogram. For FUNCTIONs, the flag (byte 

140 

10) indicates either in-line (including 
which generation routine must be used) or 
that a call is to be generated (when the 
flag is equal to zero) • 

This roll is used and then destroyed by 
Allocate. 

ROLL 1 : SOURCE ROLL 

This roll holds source module statements 
while they are being processed during the 
operations of Parse. The roll is not used 
by any later phase of the ~ompiler. 

Source statements appear on this roll 
one card column per byte. Thus, each card 
of a source statement occupies' 20 groups on 
the roll. The group size is four bytes. 
The sta tement 

A(I,J)=B(I,J)*2+C(I,J)**2 

would therefore appear on the SOURCE roll 
as: 

4 bytes 
r---------T-~--------T----------T--------, 
I bib I bib I 
~---------i----------i----------t---------~ 
I bib I A I ( I 
~---------i--------·--i----------t--------~ 
I I I , I J I) I 
~---------i----------i----------f---------~ 
I = I B I ( I I I 
~---------f----------f----------t---------~ 
I, I J I ) I * I 
~---------i----------i----------f---------~ 
I 2 I + I C I ( I 
~---------f----------t----------t---------~ 
I I I , I J I) I 
~---------t----------f----------f---------~ 
I * I * I 2 I b I 
~---------f----------i----------f---------~ 
I bib I bib I 
~---------i----------i---------.-i---------~ 
I I 
I I 
I I 
~---------T----------T----------T---------~ 
I bib I bib I L _________ i_ _________ i_ _________ i_ ________ J 

where b stands for the character blank, and 
a total of 20 words is occupied by the 
statement. 



ROLL 2: IND VAR ROLL 

This roll holds a pointer to the induc
tion variable (the DO variable) used in 
each DO loop. The pointer specifies the 
appropriate group on the SCALAR roll. Each 
pointer is placed on the roll by Parse as 
the DO loop is encountered in the source 
module. When the loop is closed, the 
pointer is deleted. 

The roll is not used in subsequent 
phases of the compiler. The group size for 
the IND VAR roll is four bytes. 

ROLL 2 : NONSTD SCRIPT ROLL 

This roll exists only in Unify; the 
information held on it is taken from the 
SCRIPT roll. The group size for the NONSTD 
SCRIPT roll is variable, with a minimum of 
20 bytes. Each group on the roll describes 
an array reference. 

The format of the NONSTD SCRIPT roll 
group is: 

4 bytes 

r--------T--------------------------------, 
Itraits I frequency I 

~-------~--------------------------------~ 
Ipointer to ARRAY REF roll I 

~-----------------------------------------~ 
Ipointer to the ARRAY roll I 
~-----------------------------------------~ 
I offset I 
~-----------------------------------------~ 
linduction variable coefficient I 
t-----------------------------------------i 
I I 
I I 
I I 
~-----------------------------------------~ 
I induction variable coefficient I L _________________________________________ J 

where the first byte of the first word 
contains the trait, which indicates either 
joined or not joined; the value of this 
item is always zero (not joined) for this 
roll. The joined value indicates that the 
subscript described must appear in a gener
al register at the time of the reference. 
The remaining three bytes of the first word 
indicate the number of times this subscript 
expression is used. . 

The next two words contain pointers to 
rolls holding information on the array and 
the array reference to which this group 
refers. The fourth word holds the array 
offset; this value accounts for element 
size and includes all modification due to 

constant subscripts. The remaining words 
hold the induction variable coefficient 
used in this reference for each loop in the 
nest, beginning with nest level one (the 
outermost loop) and ending with the highest 
nest level at this array reference. 

ROLL 3: NEST SCRI PT ROLL 

• 
This roll contains 'information concern-

ing array references in nested DO loops. 
The information for this roll is taken from 
the SCRIPT roll as each nest of loops is 
encountered, one nest at a time. The roll 
exists only in Unify. The group size of 
the NEST SCRIPT roll is variable with a 
m1n1mum of 20 bytes. The format of the 
NEST SCRIPT roll is as follows: 

4 bytes 
r--------T--------------------------------l 
I traits I frequency I 
~--------~-----------------~-------------~ 
lpointer to ARRAY REF roll I 
~---------------------------------------i 
lpointer to the ARRAY roll I 

~-----------------------------------------~ 
loffset I 
~------------.-----------------------------~ 
linduction variable coefficient I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------~ 
linduction variable coefficient I L-________ ~ _______________________________ J 

where the first byte of the first word 
indicates joined or not joined. The 
remaining three bytes of the first word 
indicate the number of times that this 
,subscript expression is used. The next two 
words of the group contain pointers to 
rolls which hold information on the array 
and the array reference to which this entry 
refers. The fourth word holds the actual 
adjusted offset for this array reference. 
The last words of the group contain the 
coefficients of induction variables used in 
the array reference, beginning with the 
nest level one variable and ending with the 
highest nest level. ' 

ROLL 4: POLISH ROLL 

This roll is used to hold the Polish 
notation generated by Parse, one statement 
at a time. (The Polish notation is moved 
to the AFTER POLISH roll at the end of each 
statement.) Therefore, the roll contains 

Appendix B: Rolls Used in the Compiler 141 



pointers, drivers, and an occasional con
stant. The terms PO and Pi are used to 
refer to the bottom and next-to-bottom 
groups on the POLISH roll, respectively. 

In Gen, the Polish notation is moved 
back onto the POLISH roll from the AFTER 
POLISH roll, one statement at a time. It 
is used in the production of object code. 

The group size for the POLISH roll is 
four bytes. The format of the Polish 
notation which appears on this roll is 
described completely in Appendix C. 

The POLISH roll is not used in the other 
phases of the compiler and no information 
is left on it through these phases. 

ROLL 4: LOOP SC~IPT ROLL 

This roll contains information on 
references encountered in the 
module. The group size for the LOOP 
roll is variable; the minimum is 20 
Its format is: 

4 bytes 

array 
source 
SCRIPT 
bytes. 

r--------7--------------------------------, 
Itraits , frequency , 
~--------~--------------------------------~ 
Ipointer to the ARRAY REF roll , 
~-----------------------------------------~ 
,pointer to the ARRAY roll , 
~----------------------------------------~ 
,offset , 
~-----------------------------------------~ 
,induction variable coefficient , 
~----------------------~------------------~ 
I , , , , , 
~-----------------------------------------~ 
linduction variable coefficient , l _________________________________________ J 

All items are the same as described for the 
NEST SCRIPT roll (roll 3). 

The LOOP SCRIPT roll exists only in 
Unify. It is used by this phase to further 
separate subscripts into two ca~egories: 
standard, those which must appear 1n gener
al registers at the time of reference, and 
nonstandard. 

ROLL 5: LITERAL CONST ROLL 

This roll holds literal constants, which 
are stored as plexes. The group size for 
the LITERAL CONST roll is variable. Each 
plex has the form: 

142 

4 bytes 
r-----------------------------------------, 
, n , 

~-----------------------------------------~ 
, k , 

~----------7---------T---------T----------~ ,c1 ,c2 , C3 'c , 
~----------~--------~--------i----------~ 
I , 
I I 
, I 
~----------T---------T---------T----------~ 'c' , , I L __________ ~ ________ ~ ________ ~ __________ J 

where n is the number of words in the plex, 
exclusive of the word which holds n, k is 
the number of bytes in the literal con
stant, and c (the k character) may fall in 
any byte of the last word of the plex. If 
the literal constant appeared in a source 
module DATA or PAUSE statement, the high 
order bit of the second word of the plex 
(k) is set to one; otherwise, it is zero. 

Entries are made on the LITERAL CONST 
roll only during Parse. It is.used to hold 
the literal constants throughout the com
piler; its format, therefore, does not 
vary. 

ROLL 7: GLOBAL SPROG ROLL 

In Parse this roll holds the names of 
all SUBROUTINEs and non-library FUNCTIONs 
referred to in the source module. It also 
holds the names of all subprograms listed 
in EXTERNAL statements in the source 
module, including library subprograms. In 
addition, the compiler itself generates 
calls to the library exponentiation rou
tines; the names of these routines are 
entered on the GLOBAL SPROG roll. 

The group size for the GLOBAL SPROG roll 
is eight bytes. All groups placed on the 
GLOBAL SPROG roll by Parse have the follow
ing format: 

4 bytes 
r------------------~----------------------, 
,<--------------subprogram----------------, 
~--------------------T----------T---------~ 
I-------name-------->I TAG I 0 , L ____________________ ~ _________ i _________ J 

The TAG appearing in the seventh byte of 
the group indicates the mode and size of 
the FUNCTION value for FUNCTIONs; it has no 
meaning for SUBROUTINEs. 

In Allocate, the information on the roll 
is altered to: 



4 bytes 
r--------------------T--------------------, 
I ESO number I displacement I 
~--------------------~--------------------~ 
I base table pointer i l _________________________________________ J 

The ESO number is the one assigned to the 
subprogram. The displacement and the base 
table pointer, taken together, indicate the 
location assigned by Allocate ~o hold the 
address of the subprogram. The specified 
BASE TABLE roll group holds an address; the 
displacement is the distance in bytes from 
that aaaress to the location at which the 
address of the subprogram will be stored in 
the object module. 

In Gen, the GLOBAL SPROG roll is used in 
the construction of object code, but it is 
not altered. 

In Exit, the roll is used in the produc
tion of RLD cards, but is not altered. 

ROLL 8: FX CONST ROLL 

This roll holds the fullword integer 
constants which are used in the source 
module or generated by the compiler. The 
constants are held on the roll in binary, 
one constant per group. The group size for 
the FX CONST roll is four bytes. 

The format of the FX CONST roll is 
identical for all phases of the compiler. 
The roll remains in the roll area for all 
phases, even though it is not actually used 
in Allocate and Unify. 

ROLL 9: FL CONST ROLL 

This roll holds the single-precision 
real (floating point) constants used in the 
source module or generated by the compiler. 
constants are recorded on the roll in 
binary (floating point format), each con
stant occupying one group. The group size 
for the FL CONST roll is four bytes. 

The FL CONST roll remains 
area for all phases of 
although it is not actually 
ate or Unify. The format 
identical for all phases. 

in the roll 
the compiler, 

used in Alloc
of this roll is 

ROLL 10: OP CONST ROLL 

This roll holds the double-precision 
\tl-by~el real constan~~ used in the source 
module or defined by the compiler. 

The constants are recorded in binary 
(double-precision floating point format), 
one constant per group. The group size for 
the DP CONST roll is eight bytes. 

The DP CONST roll is present in this 
format through all phases of the compiler. 

ROLL 11: COMPLEX CONST ROLL 

This roll holds the complex constants of 
standard size (eight bytes) used in the 
source module or generated by the compiler. 
Each complex constant i~ stored on the roll 
as a pair of 4-byte binary floating-point 
numbers, the first represents the real part 
of the constant and the second represents 
the imaginary part. 

The COMPLEX CONST roll exists in the 
format described above for all phases of 
the compiler. The group size is eight 
bytes. 

ROLL 12: DP COMPLEX CONST ROLL 

This roll holds the complex constants of 
optional size Cl6 bytes) which are used in 
the source module or generated by the 
compiler. Each constant is stored as a 
pair of double-precision binary floating 
point values. The first value represents 
the real part of the constant; the second 
value represents the imaginary part. The 
group size for the OP COMPLEX CONST roll is 
16 bytes. 

The DP COMPLEX CONST roll exists in this 
format for all phases of the compiler. 

gOLL 13: TEMP NAME ROLL 

This roll is used as temporary storage 
for names which are to be placed on the 
ARRAY or EQUIVALENCE roll. The group size 
for the TEMP NAME roll is eight bytes. The 
format of the group is: 

Appendix B: Rolls Used in the Compiler 143 



4 bytes 
r-----------------------------------------, I<-----------------name-------------------I 
~-------------------T----------T---------~ 1------------------->1 TAG I 0 I L ____________________ ~ __________ ~ _________ J 

The TAG appearing in the seventh byte of 
the group indicates, in the format of the 

. TAG field of a pointer, the mode and size 
of the variable. 

The TEMP NAME roll is used only during 
Parse and Allocate: it does not appear in 
any later phase of the compiler. 

ROLL 13: STD SCRIPT ROLL 

The information on this roll pertains to 
array references for which the subscript 
expression must appear in a general regist
er (joined). 

The roll exists only in Unify and the 
information contained therein is taken from 
the SCRIPT roll. Its structure and con
tents are ide~t;cal to those of the NONSTD 
SCRIPT roll I "oIl 2) with the exception 
that the traitJ on this roll always indic
ate jOined. The group size is variable 
with a minimum of 20 bytes. 

ROLL 14: TEMP ROLL 

This roll is used a"s temporary storage 
in Parse and is not used in any later phase 
of the compiler. The group size for the 
TEMP roll is four bytes. 

This roll is used as temporary storage 
for error information in Parse and is not 
used in the other phases of the compiler. 
The group size for the ERROR TEMP roll is 
four bytes. 

ROLL 15: DO LOOPS OPEN ROLL 

In Parse, as DO statements are encoun
tered, pointers to the target labels of the 
DO statements are placed on this roll. 
When the target statement itself is encoun
tered, the pointer is removed. 

In Allocate, the roll may contain some 
pointers left from Parse: if any are pres
ent, they indicate unclosed DO loops: the 
roll is checked by Allocate and any infor
mation on it is removed. 

144 

This roll is not used after Allocate. 
The group size for the DO LOOPS OPEN roll 
is four bytes. 

ROLL 15: LOOPS OPEN ROLL 

This roll contains the increment and 
terminal values of the induction variable 
used in a DO loop and transfer data for the 
reiteration of the loop. 

Gen creates the roll by establishing an 
entry each time a DO loop is encountered. 
The information is used in generating the 
object code. As a loop is closed, the 
bottom group from the LOOPS OPEN roll is 
pruned. 

The group size is four bytes. Four 
groups are placed in the roll at one time. 
The configuration of a LOOPS OPEN roll 
group is as follows: 

4 bytes 
r-----------------------------------------, 
I pointer to n3 (increment) " I 
~-----------------------------------------~ 
I pointer to n~ (terminal value) I 
~-----------------------------------------~ 
I LOOP DATA pointer I 
~----------------------------------------~ I pointer to return point made label I L _________________________________________ J 

ROLL 16: ERROR MESSAGE ROLL 

This roll is used only in Parse. It is 
used during the printing of the error 
messages for a single card of the source 
module. Each group holds the beginning 
address of an error message required for 
the card. It is used in conjunction with 
the ERROR CHAR roll, whose corresponding 
group holds the column number in the card 
with which the error is associated. The 
group size for the ERROR MESSAGE roll is 
four bytes. 

ROLL 16: TEMP AND CONST ROLL 

This roll is produced in Gen and is used 
in Gen and Exit. It holds all constants 
required for the object module and zeros 
for all temporary storage locations 
required in the object module. 

Binary constants are moved to this roll 
by Gen from the various CONST rolls. This 
roll becomes the object module'S temporary 



storage and constant area. The group size 
for the TEMP AND CONST roll is four bytes. 

ROLL 17: ERROR CHAR ROLL 

This roll is used only during Parse, and 
is not used in any subsequent phase of the 
compiler. 

While a single source module card and 
its error messages are being prepared for 
output, this roll holds the column number 
with which an error message is to be 
associated. The address of the error mes
sage is held in the corresponding group on 
the ERROR MESSAGE roll. The group size for 
the ERROR CHAR roll is four bytes. 

This roll is used only in Exit, and is 
not used in previous phases of the compil
er. It holds address constants, the loca
tions at which they are to be stored, and 
relocation information. The group size is 
16 bytes. The first word of the group 
holds an area code, indicating the control 
section in which the constant exists. The 
second word of the group holds the address 
into which the constant is to be placed; 
the third holds the' constant. The last 
word of the group indicates the relocation 
factor (ESD number) to be used for the 
constant. 

The group size for the INIT roll is 
eight bytes. The roll is initialized in 
Parse, and used and destroyed in Allocate. 
Each group on the roll holds the name of a 
scalar variable or array listed in the INIT 
option of a DEBUG statement in the source 
module. The format of the group is: 

4 bytes 
r-----------------------------------------, 
I<------------variable name---------------J 
~--------------------T--------------------~ 1------------------->1 0 J l ____________________ L ____________________ J 

ROLL 18: DATA SAVE ROLL 

This roll is used only in Gen, wh re it 
holds the Polish notation for port ons of 
DATA statements or Explicit specif cation 
statements which refer to control sections 
different from the control section present
ly in process. The roll is a temporary 
storage location for this information, 
since data values are written out for one 
control section at a time. The group size 
is four bytes. 

ROLL 19: XTEND LABEL (XTEND LBL) ROLL 

This roll is used only by Parse. It 
holds the pointers to the ~~g~~_E2ll for 
all labels defined within the innermost DO 
loops that 'are possible extended range 
candidates. The group size of the ~TE~Q 
LABE1 roll is four bytes. Each group holds 
a pointer to the LABEL r·ol!. The forma t of 
the group on the roll is: 

1 byte 3 bytes 
r--------T--------------------------------, 
ITAG ILABEL roll pointer I l ________ ~ ________________________________ J 

If the label is a possible re-entry point 
from the extended range of a DO loop, the 
TAG byte contains a X'05'. Otherwise, the 
TAG byte contains a X'OO'. 

~OLL 19: EQUIVALENCE TEMP (EQUIV TEMP) 
ROLL 

This roll is used to hold EQUIVALENCE 
roll data temporarily in Allocate, and is 
not used in any other phase of the 
compiler. The group size for the 
EQUIVALENCE TEMP or EQUIV TEMP roll is 
t\olelve bytes. The format of the group on 
the roll is: 

4 bytes 
r-----------------------------------------, 
J<---------------variable-----------------I 
~--------------------T------------------~-~ 
,-------name--------> I 0 I 
.--------------------~--------------------1 
1 offset I l _________________________________________ J 

The offset is the relative address of the 
beginning of the variable within the 
EQUIVALENCE group (set) of which it is a 
member. This roll holds this information 
during the allocation of storage for 
EQUIVALENCE variables. 

Appendix B: Rolls Used in the Compiler 145 



ROLL 20: XTEND TARGET LABEL (XTEND TARG 
LBL) ROLL 

This roll is used only by Parse. The 
group size of the XTEND TARGET LABEL roll 
is four bytes. Each group holds a pointer 
to the LABEL roll for each label that 
appears in any transfer statement (e.g., GO 
TO, Arithmetic IF statements) within a DO 
-loop. These groups indicate transfers out 
of an innermost DO loop and a possible 
extended range. The format of the group is 
the same, as Roll 19, XTEND LABEL roll. 

1 byte 3 bytes 
r--------T--------------------------------, 
I TAG ILABEL roll pointer I L ________ ~ ________________________________ J 

If the TAG byte contains a X'40', this 
indicates that the target label also 
appears in a transfer statement outside the 
DO loop and may be a possible re-entry 
point (if the label is defined within the 
loop). Otherwise, the TAG byte contains a 
X·OO'. 

This roll is used to hold EQUIVALENCE 
roll data temporarily in Allocate, and is 
not used in any other phase of the compil
er. The group size for the EQUIVALENCE 
HOLD roll is twelve bytes. The format of 
the group on the roll is: 

4 bytes 
r---------------------~-------------------, 
I<---------------variable-----------------I 
.------------------T--------------------1 
I-------name-------->I 0 I 
.--------------------~--------------------1 
1 offset I L _________________________________________ J 

The offset is the relative address of the 
beginning of the variable within the 
EQUIVALENCE group (set) of which it is a 
member. This roll holds this information 
during the allocation of storage for 
EQUIVALENCE variables. 

ROLL 20: REG ROLL 

This roll contains information concern
ing general registers required in the 
execution of DO loops in the object module. 

The group size of the REG roll is twelve 
bytes. The roll is used only in Unify. 
Each group has the following format: 

146 

" bytes 
,-----------T-----------------------------, I traits I frequency I 
~-----------~-----------------------------~ I ARRAY REF pointer I 
.-----------------------------------------~ t LOOP CONTROL pointer I L ________________________________________ J 

The frequency indicates how many times 
within a loop the register is used. The 
registers are symbolic registers that are 
converted to real registers and/or' tem
porary storage locations. The pointer to 
the ARRAY REF roll is actually a thread 
which indicates each place that this 
register is required in the loop. The last 
word, the pointer to the LOOP CONTROL roll, 
designates where the register in question 
was initialized. (The particular informa
tion is contained in the second word of the 
entry on the LOOP CONTROL roll.) 

ROLL 21: BASE TABLE ROLL 

This roll is constructed by Allocate~ 
and remains in the roll area for all 
remaining phases of the compiler. The BASE 
TABLE roll becomes the object module base 
table, which holds the base addresses used 
in referring to data in the object module. 

The group size for this roll is eight 
bytes. one group at a time is added to 
this roll by Allocate. The first word 
holds the area code which indicates the 
relocation factor by which the base table 
entry must be modified at object time; each 
unique area code also defines an object 
module control section. The second word 
holds a relative address within the control 
section defined by the area code; this is 
the value which is in the corresponding 
base table entry prior to modification by 
the linkage editor. 

The entire BASE TABLE roll is con
structed by Allocate. 

ROLL 22: ARRAY ROLL 

This roll is used throughout the compil
er to hold the required information de
scribing arrays defined in the source 
module. 

In Parse, the name and dimension infor
mation is added to the roll for each array 
definition encountered. The group size for 
the ARRAY roll is 20 bytes. The format of 
the group is: 



4 bytes 
r-----------------------------------------, 
I<------------~-array name----------------l 
t-------------------T----------T----------~ 
1------------------>1 TAG 1 0 I 
t-------------·-----~----------~----------i 
I ARRAY DIMENSION pointer I 
~-----------------------------------------~ 
1 numbE~ of elements I 

.. ------------- .. ----------------------------~ 
! array offset ! l _________________________________________ J 

The TAG appelring in the seventh byte of 
the group indi~ates, in the format of the 
TAG field of a pointer, the mode and size 
of the array variable. The pointer in the 
third word of the group points to the 
beginning of the plex on the ARRAY 
DIMENSION roll, which describes the dimen
sions of the array. The number of elements 
in the array is a constant, unless the 
array has dummy dimensions; in the latter 
case, Parse puts a dummy pointer to a 
temporary location in this word of the 
gr01JP· 

The array offset is the summation of the 
multipliers for the array subscripts. If 

the array dimensions are n1, n2, ••• n7, then 
the multipliers are 1, nl, nl*n2, nl*n2*n3, 
••• nl*n2*n3*n4*n5*n6, where the size of the 
element of the array is not considered. 
This value, after it i- multiplied by -th~ 
element size, is used as a subtractive 
offset for array references. The offset is 
placed on the roll ci:" constant unless the 
array has dummy dimensions; in the latter 
case, a dummy pointer to a temporary loca
tion is placed in the last worj of the 
group. 

In Allocate, the first two words of the 
ARRAY roll group are replaced with tne 
follO'.-ling: 

4 hytes 
r---------T----------T--------------------, 
I TAG ID~G/CEAD I displacement I 
~---------L----------L--------------------~ 
I base table pointer I l _________________________________________ J 

The TAG is unchanged, except in location, 
from Parse. The DBG/CEAD flag is logically 

~ppendix B: Rolls Used in the Compiler 146.1 



split into two hexadecimal values. The 
first of these indicates debug references 
to the variable; its value is 1 for INIT, 2 
for SUBCHK, 0 for neither, and 3 for both. 
The second hexadecimal value is nonzero if 
the array is in COMMON, a member of an 
EQUIVALENCE set, used as an argument to a 
subprogram, or a dummy; it is zero other
wise. The displacement and the base table 
pointer, taken together, indicate the 
beginning address of the array. The base 
table pointer specifies the BASE TABLE roll 
group to be used in references to the 
array; the displacement is the distance in 
bytes from the address held in that group 
to the location at which the array begins. 
If the array is a dummy, the base table 
pointer is replaced by a pointer to the 
GLOBAL DMY roll group defining the array, 
and the displacement is zero. 

The third, fourth, 
the ARRAY roll group are 
Allocate. 

and fifth words of 
not modified by 

The ARRAY roll remains 
throughout the compiler, and 
suIted, but not modified, 
following Allocate. 

ROLL 23: DMY DIMENSION ROLL 

in storage 
it is con

by the phases 

This roll is used first in Allocate, 
where it holds pointers to the array 
definition and the entry statement with 
which dummy array dimensions are asso
ciated. The group size of the DMY DIMEN
SION roll is four bytes. Two groups are 
added to the roll at a time to accommodate 
this information; the format is: 

4 bytes 
r------------------------------------------, 
I ARRAY pointer I 
~----------------------------------------~ 
I ENTRY NAMES pointer 1 l _________________________________________ J 

In Gen, the DMY DIMENSION roll is used 
in the generation of temporary locations 
for the dummy dimensions. This operation 
is performed when code is being produced 
for the prologue with which the dummy 
dimension is associated. 

The DMY DIMENSION roll is not used by 
later phases of the compiler. 

ROLL 23: SPROG ARG ROLL 

This roll becomes the subprogram argu
ment list area of the object module. The 

roll is constructed by Gen and holds point
ers to the arguments to subprograms in the 
order in which they are presented in the 
subprogram reference. These pointers may, 
therefore, point to the SCALAR, ARRAY, 
GLOBAL SPROG, or TEMP AND CONST rolls (the 
last roll holds arguments which are 
expressions or constants). The value zero 
is placed on this roll for arguments whose 
addresses are computed and stored in the 
object module argument list area. 

The TAG fields of the pointers on this 
roll contain the value zero except for the 
TAG field of the last p01nter for a single 
subproqram reference: this field contain~ 
the-vaiue 80. 

The contents of the SPROG ARG roll are 
punched by Exit. The group size for the 
SPROG ARG roll is four bytes. 

ROLL 24: ENTRY NAMES ROLL 

In Parse, this roll holds all ENTRY 
names defined in the source' subprogram, and 
pointers to the locations on the GLOBAL DMY 
roll at which the definitions of the dummy 
arguments corresponding to the ENTRY begin. 
The group size for the ENTRY NAMES roll is 
16 bytes. The format of the group is: 

4 bytes 

r-----------------------------------------, 
I<--------------ENTRY name----------------I 
~--------------------T--------------------~ 
1------------------->1 0 1 
~--------------------i--------------------~ 
I dWT®Y pointer i 
~----------------------------------------~ 
I 0 1 L--_______________________________________ J 

The dummy arguments corresponding to the 
ENTRY are listed on the GLOBAL DMY roll in 
the order in which they are presented in 
the ENTRY statement. 

In Allocate, the ENTRY NAMES roll is 
used in the check to determine that scalars 
with the same names as all ENTRYs have been 
set. A pointer to the scalar is placed in 
the fourth word of the group by this phase. 

In Gen, during the production of the 
initialization code (the object module 
heading), the first word of the group is 
replaced by a pointer to the ADCON roll 
indicating the location of the prologue, 
and the second word is replaced by a 
pointer to the ADCON roll indicating the 
location of the epilogue. During the pro
duction of code for the prOlogue, the first 
pointer (the first word of the group) is 
replaced by a pointer to the ADCON roll 

Appendix B: Rolls Used in the Compiler 147 



which indicates the entry point for the 
ENTRY. 

This roll is not required after the Gen 
phase. 

ROLL 25: GLOBAL DMY ROLL 

In Parse, each group on the roll con
tains the name of a dummy listed in a dummy 
argument list for the principle entry or 
for an ENTRY statement in a source subpro
gram. A flag also appears in each group 
which indicates whether the dummy is a 
wcall by name w or a ·call by value w dummy. 
The group size is eight bytes. The format 
of the group in Parse is: 

4 bytes 
r-----------------------------------------, 
I<--------------dummy name----------------I 
~--------------------T--------------------~ 
1------------------->1 flag 1 l ____________________ ~ ____________________ J 

where the dummy name occupies the first six 
bytes of the group. 

Label dummies, indicated by asterisks in 
the source module, are not listed on this 
roll. With this exception, however, the 
dummy lists from the source subprogram are 
entered on this roll as they appear in the 
source statements. The end of each dummy 
list is signaled by a marker symbol on the 
roll. since each of the dummy lists is 
represented on the roll, the name of a 
single dummy may appear more than once. 

In Allocate, the information in each 
group is replaced by: 

4 bytes 
r---------T----------T--------------------, 1 TAG 1 DBG/flag 1 displacement 1 
~--------~----------~--------------------~ 
1 base table pointer 1 l _________________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE roll to be used for 
references to the dummy, and the displace
ment (in the third and fourth bytes) indi
cates the distance in bytes from the 
address stored in that BASE TABLE roll 
group to the location of the dummy. The 
Wflag W occupies the second hexadecimal 
character of the second byte and is 
unchanged from Parse, indicating call by 
name if it is on. The first hexadecimal 
value in that byte indicates debug 
references to the variable; its value is 1 
for INIT, 2 for SUBCHK, 0 for neither, and 
3 for both. The TAG indicates the mode and 
size of the dummy. 

148 

The GLOBAL DMY roll is used but unmodi
fied in Gen and Exit. 

ROLL 26: ERROR ROLL 

This roll is used only in Parse and 
holds the location within the statement of 
an error, and the address of the error 
message for all errors encountered within a 
single statement. As the statement is 
written on the source listing, the informa
tion in the ERROR roll groups is removed, 
leaving the roll empty for the processing 
of the next statement. 

The group size is four bytes. Two 
groups are added to this roll at a time: 
(1) the column number of the error, count
ing from one at the beginning of the source 
statement and increasing by one for every 
card column in the statem~nt, and (2) the 
address of the message associated with the 
particular error encountered. 

ROLL 26: ERROR LBL ROLL 

This roll is used only in Allocate, 
where it holds labels which are referred to 
in the source module, but which are unde
fined. These labels are held on this roll 
prior to being written out as undefined 
labels or unclosed DO loops. The group 
size for the ERROR LBL roll is four bytes. 

ROLL 27: LOCAL DMY ROLL 

This roll holds the names of the dummy 
arguments to a statement function while the 
statement function is being processed by 
Parse. The group size is eight bytes. The 
format of the group is: 

4 bytes 
r-----------------------------------------, 
I<--------------dummy name----------------I 
~--------------------T--------------------~ 
1------------------->1 0 1 L--__________________ ~ ___________________ J 

The information is removed from the roll 
when the processing of the statement func
tion is complete. 

This roll does not appear in any subse
quent phase of the compiler; however, 
pointers to it appear in the Polish nota
tion produced by Parse and these pointers 
are, therefore, processed by Gen. 



ROLL 28: LOCAL SPROG ROLL 

In Parse. the roll holds the names of 
all statement functions as they are encoun
tered in the source module. The group size 
for the LOCAL SPROG roll is eight bytes. 
The format of the group is: 

4 bytes 
r-----------------------------------------, 
1 <------------stmt. function--------------I 
~------------------T----------T----------~ 
I-------name------->1 TAG 1 0 1 l ___________________ ~ __________ L __________ J 

The TAG appearing in the seventh byte of 
the group indicates, in the format of the 
TAG field of a pointer, the mode and size 
of the function value. 

In Allocate, the first four bytes of 
each group are replaced by a pointer to the 
BRANCH TABLE roll group which has been 
assigned to hold the address of the state
ment function. 

The LOCAL SPROG roll is used by Gen and 
Exit, but it is not modified in those 
phases. 

ROLL 29: EXPLICIT ROLL 

This roll is used in Parse and Allocate, 
where it holds the names of all variables 
defined by Explicit specification state
ments. The group size for the EXPLICIT 
roll is eight bytes. The format of the 
group in both phases. is: 

4 bytes 

r-----------------------------------------, 
I<------------variable name---------------I 
~-------------------T----------T----------~ 
1------------------>1 TAG I 0 I l ___________________ ~ __________ L __________ J 

where the TAG (seventh byte) indicates the 
mode and size of the variable. 

Groups are entered on this roll by 
Parse; the roll is consulted by Allocate, 
but not altered. 

ROLL 30: CALL LBL ROLL 

This roll is used only in Parse, where 
it holds pointers to the LBL roll groups 
defining labels which are passed as argu
ments in source module CALL statements. 
The pointers are held on this roll only 
temporarily, and are packed two pointers to 

a group. Pointers are added to the roll 
when the labels are found as arguments in 
CALL statements. The group size for the 
CALL LBL is eight bytes. 

ROLL 30: ERROR SYMBOL ROLL 

This roll is used only in Allocate, 
where it holds any symbol which is in 
error, in preparation for printing. The 
group size for the ERROR SYMBOL roll is 
eight bytes. The syrnbo~ <variable name, 
subprogram name) occup1es the first six 
bytes of the group. The remaining two 
bytes are set to zero. 

ROLL 31: NAMELIST NAMES ROLL 

In Parse, this roll holds the NAMELIST 
names defined in the NAMELIST statement by 
the source module. The group size for the 
NAMELIST NAMES roll is twelve bytes. These 
groups are placed on the roll in the 
following format: 

4 bytes 
r-----------------------------------------, 
I<---------------NAMELIST-----------------I 
~--------------------T--------------------~ 
I-------name-------->I 0 1 
~--------------------~-------------------~ 
I pointer to NAMELIST items 1 l _________ ' ________________________________ J 

where the pointer indicates the first vari
able in the list associated with the NAME
LIST name. In Allocate, the content of the 
group on the NAMELIST NAMES roll is changed 
to reflect the placement of the correspond
ing NAMELIST table in the object module. 
The format of the first two words of the 
modified group is: 

4 bytes 
r--------------------T--------------------, 
I 0 1 displacement I 
~--------------------~-------------------~ 
I base table pointer , I L-________________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE roll to be used for 
references to the NAMELIST table, and the 
displacement (bytes 3 and 4) indicates the 
distance in bytes from the address in that 
BASE TABLE roll group to the location of 
the beginning of the NAMELIST table. 

This roll is used, but not modified, in 
Gen and Exi t. 

Appendix B: Rolls Used in the Compiler 149 



ROLL 32: NAMELIST ITEMS ROLL 

This roll holds the variable names 
listed in the namelists defined by the 
source module. The group size for the 
NAMELIST ITEMS roll is eight bytes. Infor
mation is placed on the roll by Parse in 
the following form: 

4 bytes 
r-----------------------------------------, 
I<---------------variable-----------------I 
~--------------------T--------------------~ 
I-------name--------> I 0 I L ____________________ ~ ____________________ J 

A marker symbol separates namelists on the 
roll. 

The roll is used in 
Allocate and is destroyed. 
appear in later phases. 

this 
It 

ROLL 33: ARRAY DIMENSION ROLL 

format by 
does not 

This roll is used to hold dimension 
information for the arrays defined in the 
source module. The group size for the 
ARRAY DIMENSION roll is variable. The 
information is placed on the roll by Parse 
in the form of a plex, as follows: 

4 bytes 
r-----------------------------------------, 
I n I 
~-----------------------------------------~ 
I dimension I 
~---------------------~-------------------~ 
I multiplier I 
~-----------------------------------------~ 
I dimension I 
~-----------------------------------------~ 
I multiplier I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------~ 
I dimension I 
~----------------------------------------~ 
I multiplier I L _________________________________________ J 

where n is the number of words in the plex, 
exclusive of itself. As many dimensions 
and corresponding multipliers appear as 
there are dimensions declared for the 
array. 

Unless the array is a dummy and has 
dummy dimensions, each dimension and multi
plier is a constant. When dummy dimensions 
do appear in the array definition, the 
corresponding dimension on this roll is a 

150 

pointer to the dummy dimension variable on 
the SCALAR roll. and all affected multip
liers are pointers to temporary locations 
(on the TEMP AND CONST roll). The multip
liers for an array with dimensions n1, n2, 
n3 •••• , n7 are 1, n1, n1*n2, ••• , 
n1*n2*n3*n4*nS*n6. 

The ARRAY DIMENSION roll is present, but 
not modified in Unify, Gen, and Exit. 

ROLL 34: BRANCH TABLE ROLL 

This roll becomes the object module 
branch table. During Allocate, where the 
roll is first used, the size of the roll is 
determined, and some groups are actually 
placed on it. These groups contain the 
value zero, and each group refers to a 
source module label. 

In Gen, the information for the BRANCH 
TABLE roll groups is supplied as each 
labeled statement is processed. The group 
size for the BRANCH TABLE roll is eight 
bytes. The format of the group is: 

4 bytes 
r-----------------------------------------, 
I area code I 
~-----------------------------------------~ 
I relative address I L _________________________________________ J 

where the area code provides the reference 
for linkage editor modification of the 
corresponding branch table word, and the 
relati ve address is the relative locat.ion 
of the label in the control section (area) 
in which it appears. Branch table (and, 
hence, BRANCH TABLE roll) entries are pro
vided for all branch target labels, state
ment functions, and made labels (labels 
constructed by the compiler to refer to 
return points in DO loops and to the 
statements following Logical IF state
ments). 

The roll is retained in the Gen format 
until it is written out by Exit. 

ROLL 35: TEMP DATA NAME ROLL 

This roll is used only in Parse. where 
it holds pointers and size information for 
variables listed in DATA statements or in 
Explicit specification statements which 
specify initial values. Information is 
held on this roll while the statement is 
being processed. 



The group size for the TEMP DATA NAME 
roll is four bytes. Four groups are added 
to the TEMP DATA NAME roll for each vari
able listed in the statement being scanned. 
They are in the following sequence: 

4 bytes 
r-----------------------------------------, 
I element size (bytes) I 
~-----------------------------------------~ 
I pointer to variable i 
~-----------------------------------------~ 
I number elements set I 
~-----------------------------------------~ 
I element number I l _________________________________________ J 

The third group specifies the number of 
elements of the variable being set by the 
DATA statement or the Explicit specifica
tion statement. If a full array is set, 
this is the number of elements in the 
array; if a specific array element is set, 
this word contains the value one. 

The fourth group indicates the first 
element number being set. If a full array 
is being set, this word holds the value 
zero; otherwise, it holds the element 
number. 

ROLL 36: TEMP POLISH ROLL 

This roll is used only in Parse, where 
it holds the Polish notation for a single 
DATA group during the scanning of that 
group. In an Explicit specification state
ment, a DATA group is defined to be a 
single variable and the associated con
stants; in a DATA statement, a DATA group 
is the set of variables listed between a 
pair of slash characters and the constants 
associated with that set. 

This roll is used because any error 
encountered in a DATA group will cause the 
Polish notation for the entire group to be 
canceled. In an Explicit specification 
statement, the type information on the 
variable is retained when the data is bad; 
if, however, the type information is bad, 
the data is also lost. The group size is 
four bytes. 

ROLL 36: FX AC ROLL 

This roll is used in Gen only and is a 
fixed length roll of 16 qroups. The groups 
refer to the 16 general registers in order. 

The group size for the FX AC roll is 
four bytes. Each group on the roll con-

tains a pOinter to the value which is held 
in the corresponding general register at 
the present point in the object module; as 
the contents of b~e general registers are 
changed, the pointers are changed. The 
pointers are used primarily to indicate 
that the general register is in use and the 
mode of the value in it. They are used for 
optimizing only in the case of the general 
registers which are loaded from the base 
table and the general reg~ste~s used for 
indexing. If the general register corre
sponding to a specific group is not in use, 
the group holds the value zero. 

ROLL 37: EQUIVALENCE ROLL 

, 
In Parse, this roll holds the names of 

all variables listed in source module 
EQUIVALENCE statements •. One group is used 
for each variable name listed in the source 
statement, and EQUIVALENCE sets are 
separated from each other by a marker 
symbol. The group size for the EQUIVALENCE 
roll is twelve bytes. The format of the 
group is: 

4 bytes 
r-----------------------------------------, 
I <---------------variable-----------------I 
~--------------------T--------------------~ 
I---name------------>I 0 I 
~-------------------~-------------------~ 
I EQUIVALENCE OFFSET pointer I L ______________________________________ ~~=J 

The pointer to the EQUIVALENCE OFFSET roll 
points to the first word of a plex on that 
roll which holds the subscript information 
supplied in the EQUIVALENCE statement. If 

, no subscript was used on the variable in 
the EQUIVALENCE statement, the value zero 
appears in the third word of the group on 
the EQUIVALENCE roll. 

The roll is used and destroyed in Alloc
ate, during the assignment of storage for 
EQUIVALENCE variables. 

ROLL 37: BYTE SCALAR ROLL 

This roll is use(~ only in Allocate, 
where it holds (temporarily) the names of 
1-byte scalar variables. The group size 
for the BYTE SCALAR roll is eight bytes. 
The format of the group is: 

Appendix B: Rolls Used in the Compiler 151 



4 bytes 
r-----------------------------------------, 
I<-------------scalar name----------------I 
~-------------------T----------T---------~ 
1------------------->1 TAG ,0 , l ____________________ ~ __________ ~ _________ J 

where the TAG field indicates the mode and 
size of the variable. 

ROLL 38: USED LIB FUNCTION ROLL 

In Parse, the roll holds the names and 
other information for all library FUNCTIONs 
which are actually referenced in the source 
module. The group size for the USED LIB 
FUNCTION roll is twelve bytes. The infor
mation is placed on the roll in the follow
ing format: 

4 bytes 
r-----------------------------------------, 
I<---------------FUNCTION-----------------I 
~-------------------T----------T----------~ 
I-------name------->, TAG 1 0 , 
~---------T---------+----------L----------~ 
'TAG 1 flag 1 no. arguments 1 l _________ ~ _________ ~ _____________________ J 

The TAG appearing in byte 7 indicates the 
mode and size of the function value. The 
TAG appearing in byte 9 indicates the mode 
and size of the arguments to the FUNCTION. 
The flag in byte 10 indicates whether the 
FUNCTION is in-line and, if it is, which 
generation routine should be used. If the 
flag is zero, a call is to be generated. 
The last two bytes hold the number of 
arguments to the FUNCTION. The maximum 
number of arguments allowed for the MIN and 
MAX FUNCTIONs is 16,000. 

In Allocate, the information in the 
first two words of the group is altered to: 

4 bytes 
r---------T----------T--------------------, 
1 TAG 1 0 1 displacement 1 
~---------~----------~--------------------~ 
, base table pointer I l _________________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE roll to be used in 
referring to the address of the subprogram. 
The displacement is the distance in bytes 
from the contents of the base table entry 
to the location at which the address of the 
subprogram will be stored. The TAG byte is 
unchanged, except in location, from Parse. 

The USED LIB FUNCTION roll is consulted 
by Gen in the construction of object code, 
but it is not modified. It is also pre
sent, but not modified, in Exit. 

152 

ROLL 39: COMMON DATA ROLL 

This roll holds the names of all COMMON 
variables as defined in source module COM
MON statements. A marker symbol separates 
COMMON blocks on this roll. All informa
tion is placed on this roll in Parse. 

The group size is eight pytes. The 
first six bytes of each group hold the 
nameof the COMMON variable; the remaining 
two bytes are set to zero, as follows: 

4 bytes 
r-----------------------------------------, 
I<------------variable name---------------I 
~-------------------T---------------------~ 
1------------------>1 0 I l ___________________ ~ _____________________ J 

In Allocate, the information on this 
roll 1S used and destroyed. The roll is 
not used in later phases. 

ROLL 39: HALF WORD SCALAR ROLL 

The roll is used only in Allocate, where 
it holds (temporarily) the names of half
word scalar variables defined in the source 
module. The group size for the HALF WORD 
SCALAR roll is eight bytes. The format of 
the group is: 

4 bytes 
r-----------------------------------------, 
I<-------------scalar name----------------I 
~-------------------T----------T----------~ 
1------------------>1 TAG I 0 1 l ___________________ ~ _________ ~ __________ J 

where the TAG indicates the mode and size 
of the variable. 

ROLL 40: COMMON NAME ROLL 

In Parse, this roll holds the name of 
each COMMON block, and a pointer to the 
location on the COMMON DATA roll at which 
the specification of the variables in that 
block begins. The group size for the 
COMMON NAME roll is twelve bytes. The 
format of the group is: 

4 bytes 
r-----------------------------------------, 
I<--------------block name----------------I 
~--------------------T--------------------~ 
1------------------->1 0 1 
~--------------~-----~-------------------~ 
1 COMMON DATA pointer 1 L _________________________________________ J 



The pointer points to the first variable in 
the list of names which follows the block 
name in the COMMON statement; since a 
sinale COMMON block may be mentioned more 
than once in source-module COMMON state
ments, the same COMMON name may appear more 
than once on this roll. The information is 
placed on this roll as COMMON statements 
are processed by Parse. 

In Allocate, the roll is rearranged and 
the last word of each group is replaced by 
the size of the COMMON block in bytes, 
after duplicate COMMON names have been 
eliminated. The size is written out by 
Allocate and the roll is destroyed. 

ROLL 40: TEMP PNTR ROLL 

The group size for the TEMP PNTR roll is 
four bytes. This roll is used only in Gen, 
and holds pointers to those groups on the 
TEMP AND CONST roll that represent object 
module temporary storage locations. The 
information recorded on this roll is main
tained so that temporary storage created 
for one statement can be reused by subse
quent statements. 

ROLL 41: IMPLICIT RO~ 

The roll is used only in Parse and 
Allocate, where it holds the information 
supplied by the source module lMPLICIT 
statement. The group size for the IMPLICIT 
roll is four bytes. Its format is: 

1 byte 1 byte 1 byte 1 byte 
r----------T---------T---------T----------, 
I letter I 0 I TAG I 0 I L __________ ~ _________ ~ _________ L_ _________ J 

This information is placed on the roll by 
Parse. The TAG field in the third byte of 
the group indicates, in the format of the 
TAG field of a pointer, the mode and size 
assigned to the letter by means of the 
IMPLICIT statement. 

The IMPLICIT roll is used by Allocate, 
and destroyed. 

ROLL 42; EQUIVALENCE OFFSET ROLL 

Thi s roll ;.s constructed during the 
operation of Parse and holds the subscripts 
from EQUIVALENCE variables in the form of 
plexes. The group size for the EQUIVALENCE 
OFFSET roll is variable. Each plex has the 
form: 

4 bytes 
r-----------------------------------~-----1 
I n I 
~-----------------------------------------~ i subscript 1 i 
~-----------------------------------------~ 
I subscript 2 I 
~----------------------------------------~ 
I I 
I I 
I I 
I , 

~----------------------------~----------i 
I subscript n I L _________________________________________ J 

where n is the number of words in the plex 
exclusive of itself and, therefore, also 
the number of subscripts. Each subscript 
is recorded as an integer constant. 

The connection between a plex on this 
roll and the corresponding EQUIVALENCE 
variable is m~e by a pointer which appears 
on the EQUIVALENCE roll and points to the 
first word of the appropriate pIe x on this 
roll. 

In Allocate, the EQUIVALE·NCE OFFSET roll 
is used in the allocation of storage for 
EQUIVALENCE variables. It" is destroyed 
during this phase, and does not appear in 
the later phases of the compiler. 

ROLL 42: FL AC ROLL 

This roll is used in Gen only, and is a 
fixed length roll of four groups. The 
groups refer to the four floating-point 
registers, in order. 

The group size for the FL AC roll is 
four bytes. Each group on the roll con
tains a pointer to the value which is held 
in the register at the present point in the 
object program; as the contents of the 
registers change, the pointers are changed. 
These pointers are used primarily to indic
ate that the register is in use and the 
mode of the value in it. If the register 
is not in use, the corresponding group on 
this roll contains zero. 

ROLL 43: LBL ROLL 

This roll holds all labels used and/or 
defined in the source module. Each label 
is entered on the roll by Parse when it is 
f~rst encountered, whether in the label 
field or within a statement. 

The group size for the LBL roll is four 
bytes. In Parse, the format of the LBL 
roll group is: 

Appendix B: Rolls Used in the compiler 153 





The SCALAR roll is checked, but modi
fied, during Unify, Gen, and Exit., 

ROLL 44: HEX CaNST ROLL 

This roll holds the hexadecimal con
stants used in source module DATA 
statements. 

The format of the roll is identical for 
all phases of the compiler. The group size 
is 16 bytes. Two hexa1ecimal characters 
are packed to a byte, and constants which 

occupy fewer than 16 characters are right
adjusted in the grou~ with leading zeros. 

In Parse, this roll holds the names of 
variables listed in DATA statements and 
variables for which data values are pro
vided in Explicit specification stateme~ts. 
The names are entered on the roll when they 
are found in these statements. rhe group 
size for this roll is eight bytes. The 
groups have the following form: 

Appendix B: Rolls Used in the Compiler 154.1 



1 byte 3 bytes 
r---------T-------------------------------, 
I TAG I binary label I l ________ ~ _______________________________ J 

where the first byte is treated as the TAG 
field of a pointer, and the remaining three 
bytes contain the label, converted to a 
binary integer. 

In the TAG field, the mone portion (the 
first four bits) is used to indicate 
whether the label has been defined; the 
remainder of the TAG field is used to 
indicate whether the label is the target of 
a jump, the label of a FOR~ffiT, or neither. 

The leftmost four bits of the TAG byte 
are used as follows: 

8 Label is defined 

o Label is undefined 

The rightmost four bits of the TAG byte 
indicate the following: 

1 This is the label of the target 
of a jump (GO TO) statement. 

3 This is the label of a FORMAT 
statement. 

5 This label is a possible re
entry point within an innermost 
DO loop that may have a possible 
extended range. (Parse inserts 
the hexadecimal 5 to indicate to 
Gen that the label is a possible 
re-entry point; the Gen phase 
then restores those registers 
that were saved before the 
extended range was entered.) 

o = None of the above conditions. 

In Allocate, the lower three bytes of 
each LBL roll group defining a jump target 
label are replaced by the lower three bytes 
of a pointer to the BRANCH TABLE roll 
group, which will hold the location of the 
label at object time. Each group defining 
a FOR~~T statement label is replaced (lower 
three bytes only) with a pointer to the 
FOR~AT roll group which holds the base 
pointer and displacement for the FORMAT. 
Groups defining the targets of unclosed DO 
loops are cleared to zero. 

In Gen, the LBL roll is used to find the 
pointers to the BRANCH TABLE and FORMAT 
rolls, but it is not altered. 

154 

In Parse, the names of all unsubscripted 
variables which are not dummy arguments to 
statement functions are listed on the roll 
in the order of their appearance in active 
(non-specification) statements in the 
source module. Variables which are defined 
in specification statements, but ~hich are 
never used in the source module, are not 
entered on the roll. The group size for 
the SCALAR roll is eight bytes. The format 
of the group is: 

4 bytes 
r-----------------------------------------, 
I<-------------scalar name----------------I 
~--------------------T----------T---------~ 
1------------------->1 TAG I 0 I l ____________________ ~ __________ ~ _________ J 

The TAG field appearing in the seventh byte 
of the group indicates th~ mode and size of 
the variable in the format of the TAG field 
of a pointer. 

In Allocate, the information lett on the 
SCALAR roll by Parse is replaced by infor
mation indicating the storage assigned for 
the variable. The resulting format of the 
group is: 

4 bytes 
r---------T----------T--------------------, 
I TAG IDBG/CEAD I displacement 1 

~---------~----------~--------------------~ 
J base table pointer 1 l _________________________________________ J 

The TAG field appearing in the first byte 
is unchanged, except in location, from the 
TAG field held in the SCALAR roll group 
during Parse. The DBG/CEAD flag (in the 
second byte) is logically split into two 
hexadecimal values. The first of these 
indicates debug references to the variable; 
the value is 1 for a scalar referred to in 
the INIT option; otherwise, the value is 
zero. The second hexadecimal value is 
nonzero if the variable is in COMMON, a 
member of an EQUIVALENCE set, or an argu
ment to a subprogram or a global dummy; 
otherwise, it is zero. The displacement in 
bytes 3 and 4, and the base table pOinter 
in the second word, function together to 
indicate the storage location assigned for 
the variable. The base table pointer spe
cifies a BASE TABLE roll group; the dis
placement is the distance in bytes from the 
location contained in that group to the 
location of the scalar variable. If the 
scalar is a call by name dummy, the base 
table pointer is replaced by a pointer to 
the GLOBAL DMY roll group defining it, and 
the displacement is zero. 



4 bytes 
r-----------------------------------------, 
I<---------~~~variahl~ name---~-----------I 

~-------------~=:~::T-:~=~---------------~ 
1------------------->1 0 1 l ____________________ ~ ____________________ J 

This information is used to ensure that 
no data values are provided in the source 
module ~or durr~y variables. The informa= 
tion is left on the roll throughout Parse, 
but is cleared before Allocate operates. 

In Allocate. binarv labels and the names 
of statement' functions, scalar variables, 
arrays, global subprograms, elUU used 
library functions are placed on the roll in 
order. The group size for this roll is 
four bytes. Each label entered on the roll 
occupies one word; the names occupy two 
words each and are left-justified, leaving 
the last two bytes of each name group 
unused. 

The encoded information is placed on 
this roll by Allocate as its operations 
modify the rolls on which the information 
was originally recorded by Parse. Thus, 
all the labels appear first, in the order 
of their appearance on the LBL roll, etc. 
The information is used by the Exit phase 
in producing the object module listing (if 
the LIST option is specified by the user). 

ROLL 46: LITERAL TEMP (TEMP LITERAL) ROLL 

This roll is used only in Parse, where 
it holds literal' constants temporarily 
while they are being scanned. The group 
size for the LITERAL TEMP or TEMP LITERAL 
roll is four bytes. Literal constants are 
placed on the roll one character per byte, 
or four characters per group. 

ROLL 47: COMMON DATA TEMP ROLL 

This roll holds the information from the 
COMMON DATA roll temporarily during the 
operation of Allocate, which is the only 
phase in which this roll is used. The 
qroup size for the COMMON DATA TEMP roll is 
eight bytes. The format of the group is 
identical to that of the COMMON DATA roll, 
namely: 

4 bytes 
r-----------------------------------------, 
I<--------------variable------------------I 
~-------------------T--------------------i 
I-------name-------->1 0 1 l ____________________ ~ ____________________ J 

ROLL 41: FULL WORD 5CAIAR ROLL 

This roll is used only in Allocate, 
where it holds the names of all fullword 
scalar variables defined by the source 
module. The group size is eight bytes. 
The format of the group on the roll is: 

r-----------------------------------------, 
1 <-------------scalar' name----------------I 
~--------------------T----------T---------~ 
1------------------->1 TAG 1 0 I l ____________________ l-_________ l--_______ j 

where the TAG indicates the mode and size 
of the variable. This information is held 
on this roll only temporarily during the 
assignment of storage for scalar variables. 

ROLL 48: COMMON AREA ROLL 

This roll is used only in Allocate, 
where it holds COMMON block names and sizes 
temporarily during the allocation of COMMON 
storage. The group size for the COMMON 
AREA roll is twelve bytes. The format of 
the group on the roll is: 

4 bytes 

r-----------------------------------------, 
I<--------------block name----------------I 
~--------------------T--------------------~ 
1------------------->1 0 1 
~--------------------~-------------------~ 
1 block size (bytes) I L ________________________________________ J 

, ROLL 48: NAMELIST ALLOCATION ROLL 

This roll is used only in Allocate, 
where it holds information regarding NAME
LIST items temporarily during the alloca
tion of storage for the NAMELIST tables. 
The group size for this roll is twelve 
bytes. The format of the group is: 

4 bytes 
r-----------------------------------------, 
I<------------variable name---------------I 
~-------------------T--------------------i 
1------------------->1 0 1 
~--------------------~-------------------~ 
1 pointer 1 l _________________________________________ J 

where the pointer indicates the group 
defining the variable on either the SCALAR 
or ARRAY roll. 

Appendix B: Rolls Used in the Compiler 155 



ROLL 49: COMMON NAME TEMP ROLL 

This roll is used only in Allocate, 
where it holds the information from the 
COMMON NAME roll temporarily. The group 
size for the COMMON NAME TEMP roll is 
twelve bytes. The format of the group is 
therefore identical to that of the COMMON 

·NAME roll: 

4 bytes 
r-----------------------------------------, 
I<--------------block name----------------I 
~--------------------T--------------------~ 
1------------------->1 0 I 
~-------------------~--------------------~ I COMMON DATA pointer 1 l _________________________________________ J 

where the COMMON DATA pointer pOints to the 
list of variables in the COMMON block. 

ROLL 50: EQUIV ALLOCATION ROLL 

This roll is used only during Allocate, 
and is not used in any other phase of the 
compiler. W1' r:1" the allocation of storage 
for EQUIVALENCE variables has been com
pleted, the information which has been 
produced on the GENERAL ALLOCATION roll is 
moved to this roll. The group size for the 
EQUIV ALLOCATION roll is twelve bytes. The 
format of the group is, therefore, ident
ical to that on the GENERAL ALLOCATION 
roll: 

4 bytes 
r-----------------------------------------, 
I<---------------variable-----------------I 
~-------------------T--------------------~ 
I-------name-------->I displacement I 
~--------------------~--------------------~ 
1 base table pointer 1 l _________________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE roll which will be 
used for references to the variable. The 
displacement is the distance in bytes from 
the location indicated in the BASE TABLE 
roll group to the location of the variable. 

ROLL 51: RLD ROLL 

This roll is used only in Allocate and 
Exit: it is not used in Parse. In both 
Allocate and Exit, the roll holds the 
information required for the production of 
RLD cards. The group size for the RLD roll 
is eight bytes. The group format is: 

156 

4 bytes 
r------------------------------T----------, 
I area code 1 ESD # I 
~------------------------------~---------~ 
1 address I l _________________________________________ J 

where the area code indicates the control 
section in which the variable or constant 
is contained. The ESD number gQverns the 
modification of the location by the linkage 
editor, and the address is the location 
requiring modification. 

Information is placed on this roll by 
both Allocate and Exit, and the RLD cards 
are written from the information by Exit. 
The entries made on the RLD roll by Alloc
ate concern the NAMELIST tables; all 
remaining entries are made by Exit. 

ROLL 52: COMMON ALLOCATION ROLL 

This roll is used only in Allocate and 
is not used in any other phase of the 
compiler. When the allocation of COMMON 
storage has been completed, the information 
which has been produced on the GENERAL 
ALLOCATION roll is moved to this roll. The 
group size for the COMMON ALLOCATION roll 
is twelve bytes. The format of the group 
is, therefore, identical to that on the 
GENERAL ALLOCATION roll: 

4 bytes 
r-----------------------------------------, 
I<---------------variable-----------------I 
~--------------------T--------------------~ 
I-------name-------->1 displacement 1 
~-----------------.---~-------------------~ 
1 base table pointer 1 L-________________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE roll which will be 
used for references to the variable. 

The displacement is the distance in 
bytes from the location indicated in the 
BASE TABLE roll group to the location of 
the variable. 

ROLL 52: LOOP CONTROL ROLL 

This roll is created by Unify and is 
used by Gen. The information contained on 
the roll indicates the control of a loop. 

The group si zOe for the LOOP CONTROL roll 
is twelve bytes. The format of the LOOP 
CONTROL roll group in Unify and Gen is: 



4 bytes 

r-----------T- ---------------------------, 
I traits I coefficient 1 
t-----------~-----------------------------~ 
I register (t.ds loop) i 
t-------------·---------------------------~ I base or register (outer loop) I l _________________________________________ J 

where the first byte of the first word 
(txaits) indic,1tes whether the coefficient 
is initiated by a direct load. The remain
ing three by~es is the coefficient, which 
is the multipl~er for the induction vari
able. The se·~nd four bytes is the regis
ter where the ~oefficient is required. The 
basp i~ thp Ro~rce of initialization of the 
register; it can be either a constant, 
register, or all address. 

This roll is first used in Parse, where 
the FORMAT statements are placed on it. 
See Appendix D for the description of the 
encoding of the FORMAT statement. 

Each group of the FORMAT roll is in the 
form of a plex (the qroup size is given in 
word 0). The configuration of a FOR~AT 
group in Parse is: 

~ bytes 
r-----------------------------------------l 
I size of the group 1 
t-----------------------------------------~ 
I pointer to the LBL roll 1 

t-----------------------------------------~ 
I number of bytes in the FORMAT i 
t-----------------------------------------~ 
I I 
I I 
I 1 l _________________________________________ J 

Word 0 contains a value which indicates the 
number of words in the group on tne roll. 
The pointer to the LBL roll paints to the 
label of the corresponding FORMAT state
ment. 'l'tJe next word gives the number of 
bytes of storage occupied by this particu
lar FOR~~T statement. The ellipses denote 
that the encoded FORMAT follows this con
trol information. 

In Allocate, the FORMATs are replaced hy 
the following: 

4 bytes 
r--------------------T--------------------, 
I 0 ,displacement I 
t-------------~------~--------------------~ 
I ~ base table pointer I l __________________________________________ J 

which, taken together, indicate the begin
ning location of the FORMAT statement. 
These groups are packed to the BASE of the 
roll; that is, this information for the 
first FORMAT dppears ln the first two words 
on the roll, the information for the second 
FORMAT appears in words 3 and 4, etc. 

The LBL roll group which defines the 
label of the FORMAT statement holds a 
pointer to the displacement recorned for 
the statement on this roll. 

The FORMAT roll is retained in this form 
for the remainder of the corepilation. 

This roll is created by Parse as each 
appropriate array reference is encountered. 
The array reference indicated incluies sub
scripts (one or more) which use ttle 
instruction varidble in a linear fasnion. 
Unify uses the contents of the roll. 

The group size of the SCRIPT roll is 10 
bytes, plus ~n additional 4 bytes for each 
DO loop that is open a t thf-~ point of tfle 
array reference represented by the entry. 
Thf' group forma t of the E~CF<.I PT roll in 
Parse and Unify is as described for the 
NONSTD SCRIPT roll. 

ROLL 55: LOOP DATA ROLL ------ -.-- - .-

This roll contains the initializing and 
terminating data, and indicates the induc
tion variable and the nesting level of the 
particular loop from which this entry was 
created. 

The roll is created in Parse at the tilae 
that the loop is epcountered. The group 
size of the LOOP DATA roll is 20 bytes. 
The group format of the roll in Parse is: 

4 bytes 
r---------T-------------------------------, 
1 TAG I nest level I 
.---------~-------------------------------~ 
1 pointer to induction variable I 
~-----------------------------------------~ 1 pointer to n 1 (initial value) I L-________________________________________ J 

where the TAG byte contains a X'SO' when an 
inner DO loop contains a possible extended 
range. The X'SO' is placed there by Parse 
and tested by Gen. The Gen phase then 
produces object code to save general regis
ters 4 through 7 at the beginning of this 
DO loop so that the registers are not 

Appendix B: Rolls Used in the Compiler 157 



altered in the extended range. The next 
three bytes indicate the nest level of the 
loop. The second word is a pointer to the 
SCALAR roll group which describes the 
induction variable. The third word of the 
group points to the initializing value for 
the induction variable, which may be repre
sented on the FX CONST roll or the SCALAR 
roll. 

During the operation of the Unify phase, 
the roll is completed with pointers to the 
LOOP CONTROL roll. During Unify, the LOOP 
CONTROL roll is also created; therefore, 
insertion of the pointers is done while the 
loop control data is being established. 

The following illustration shows the 
configuration of the LOOP DATA roll as it 
is used in Unify: 

4 bytes 
r-----------------------------------------, 
I nest level I 
~-----------------------------------------~ 
) SCALAR pointer (in~uction variable) I 
~-----------------------------------------~ 
1 FX CaNST oointer or SCALAR pointer I 
~-----------------------------------------i 
I LOOP CONTROL pointer (start init.) I 
~-----------------------------------------~ 
1 LOOP CONTROL pointer (end init.) I l _________________________________________ J 

The last two words (eight bytes) of the 
group are inserted by Unify. These point
ers point to the first and last LOOP 
CaNTHaL roll groups concerned with this 
loop. 

This roll is a duplicate of the SCRIPT 
roll. The contents of the SCRIPT roll are 
transferred to the PROGR~~ SCRIPT roll in 
Parse as each loop is closed. Each loop is 
represented by a reserved block on the 
roll. 

The group size of the PROGRAM SCRIPT 
roll is 16 bytes, plus an additional 4 
bytes for each nest level up to and includ
ing the one containing the reference repre
sented by the entry. The format of the 
PROGRAM SCRIPT roll group in Parse and 
Unify is as follows: 

158 

4 bytes 
r----------~------------------------------l 
I traits I frequency I 
.----------~--------~---------------------~ 
, ARRAY REF pointer I 
.-----------------------------------------~ 
I ARRAY pointer I 
.-----------------------------------------~ 
I ARRAY offset pointer I 
~------------------------------~----------~ 
J induction variable coefficient I 
.-----------------------------------------~ 
J induction variable coefficient I 
1 (nest level = 2) I 
.-----------------------------------------~ 
I I 
1 I 
I I 
.-----------------------------------------~ 1 induction variable coefficient I 
I (nest level = n) I l _________________________________________ J 

See the NONSTD SCRIPT roll for further 
description. 

This roll is used only in Gen, where it 
handles subscripts (array references) which 
are not handled by Unify. The group size 
for the ARRAY PLEX roll is twelve bytes. 
Tne format of the group on the roll is: 

4 bytes 
r-----------~-----------------------------l 
I pointer to array I 
.-----------------------------------------~ 
J painter to index I 
t-----------------------------------------~ 
I displacement I L _________________________________________ J 

'The pointer in the first word of the group 
points to the ARRAY REF roll when the 
,ubscript used contains DO dependent linear 
subscripts (which are handled by Unify) and 
non-linear variables. otherwise, the 
pointer refers to the ARRAY roll. 

The second word of the group holds a 
pointer to the index value to be used in 
the subscripted array reference. Thi~ 
pointer points to general register 9 on the 
FX AC roll if the index value has been 
loaded into that register; if the index 
value has been stored in a temporary loca
tion, the pointer indicates the proper 
location on the TEMP AND CaNST roll; if the 
index value is a fixed constant, the 
pointer indicates the proper group on the 
FX CaNST roll. When the information in 
this word has been used to construct the 
proper instruction for the array reference, 
the word is cleared to zero. 



The displacement, in the third word of 
the group, appears only when the first word 
of the group holds a pointer t.o the ARRAY 
roll. ~nerwise, tne displacement is on 
the ARRAY REF roll in the group indicated 
by the pointer in the first word, and this 
word contains the value zero. This value 
is the displacement value to be used in the 
instruction generated for the array 
reference. 

ROLL 51: ARRAY REF ROLL 

Pointers to this roll are inserted into 
the Polish notation by Parse. At the time 
that these pointers are established, the 
ARRAY REF roll is empty. The pointer is 
inserted into the Polish notation when an 
array reference includes linear loop
controlled subscripts. 

The roll is initially created by Unify 
and completed by Gen. The group size of 
the ARRAY REF roll is 16 bytes. The format 
of the ARRAY REF roll group as it appears 
in Unify is as follows: 

o 
1 1 1 1 1 2 
1 2 5 6 9 0 

3 
1 

r---------------T----T----T---------------, 
I IR1 IR~ I offset I 
r---------------~----~----~---------------~ 
I pointer to register (R1) or to the I 
I TE~~ ~~~ CONST roll I 
r-----------------------------------------~ 
I pointer to register (R~) or to the I 
I TEMP AND CONST roll , 
t-----------------------------------------~ 
I pointer to the ARRAY roll I l _________________________________________ J 

The first word of the group contains the 
low 20 bits of an instruction which is4 
being formatted by the compiler. R1 and R~ 
are the two register fields to be filled 
with the numbers of the registers to be 
used for the array reference. Word 2 of 
the group contains the pointer indicating 
the reqister to be assigned for R1 • WOrd 3 
of the group indicates the register R~. 
When R1 and R~ have been assigned, the 
second and third words are set to zero. 

Gen completes the entry by adding the 
operation code to the instruction that is 
being built. The format of an ARRAY REF 
roll group in Gen is: 

o 
1 1 1 1 1 2 
1 2 5 6 9 0 

3 
1 

r---------------T----T----T---------------l 
lop code IR1 IR~ I offset , 
~---------------~---~---~--------------~ 
I 0 or TEMP AND CONST roll I 
I pointer I 
~-----------------------------------------~ 
I 0 or TEMP AND CONST roll I 
I pointer I 
~------------------------------~----------i 
,ARRAY pointer I l _________________________________________ J 

ROLL 58: AOR CONST ROLL 

This roll contains relocatable inforroa
tion that is to be used by Exit. 

Unify creates the roll which contains a 
pOinter to the TEMP AND CONST roll and an 
area code and displacement. The pointer 
indicates an entry on the TEMP AND CONST 
roll which must be relocated according to 
the area code. The displacement is the 
value to be placed in that temporary 
storage and constant area location. 

The group size of the ADR CONST roll is 
eight bytes. The format of the ADR CONST 
roll group in Unify is: 

4 bytes 
r--------------------T--------------------, 
I area code I displacement I 
~-------------------~-------------------i 
I TEMP AND CONST pointer I l _________________________________________ J 

These groups are constructed by Unify to 
provide additional base table values for 
indexing. 

ROLL 59: AT ROLL 

This roll is constructed in Parse and 
used ~_n Gen. It is not used in the 
remaining phases. The group size for this 
roll is twelve bytes. The format of the 
group is: 

4 bytes 

r-----------------------------------------, 
, AT label pointer I 
~---------------------------------------i 
I debug label pointer I 
~-----------------------------------------i 
I return label pOinter I l _________________________________________ J 

All three of the pointers in the group 
point to the LBL roll. The first points to 
the label indicated in the source module AT 

Appendix B: Rolls Used in the Compiler 159 



statement. The second points to the made 
label supplied by the compiler for the code 
it has written to perform the debugging 
operations. The third label pointer indi
cates the made label supplied for the point 
in the code to which the debug code 
returns; that is, the code which follows 
the branch to the debugging code. 

ROLL 60: SUBCBK ROLL 

This roll is initialized in Parse and 
used in Allocate. It does not appear in 
later phases. The group size for this roll 
is eight bytes.. The format of the group 

4 bytes 
r-----------------------------------------, 
I<------------variable name---------------I 
~--------------------T--------------------~ 
1------------------->1 0 1 l ____________________ ~ ____________________ J 

Each group holds the name of an array 
listed in the SUBCHK option of a source 
module DEBUG ~tatement. 

ROLL 60: NAMELIST MPY DATA ROLL 

This roll is set up during the construc
tion of the NAMELIST tables in Allocate. 
In Exit, the roll is used to complete the 
information in the NAMELIST tables. The 
roll is not used in the other phases of the 
compiler. The group size for the NAMELIST 
MPY DATA roll is eight bytes. The format 
of the group on this roll is: 

4 bytes 
r-----------------------------------------, 
I multiplier constant 1 
~-----------------------------------------i 
1 address 1 l _________________________________________ J 

The multiplier constant refers to an 
array dimension for an array mentioned in a 
NAMELIST list. The address is the location 
in a NAMELIST table at which a pointer to 
the multiplier constant must appear. In 
Exit, the constant is placed in the tem
porary storage and constant area of the 
object module, and a TXT card is punched to 
load its address into the location speci
fied in the second word of the group. 

160 

ROLL 62: GENERAL ALLOCATION ROLL 

This ~oll is used only during Allocate, 
and is not used in any other phase of the 
compiler. During the various allocation 
operations performed by this phase, the 
roll holds the information which ultimately 
resides on the remaining ALLOCATION rolls. 
The group size for the GENERAL ~LOCATION 
roll is twelve bytes. The format of the 
group is: 

4 bytes 
r-----------------------------------------, 
I<---------------variable-----------------I 
~-------------------T---------------------1 
I-------name------->1 displacement I 
~-------------------~--------------------1 
1 base table pointer I l _________________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE ro~l which will be 
used for references to the variable. 

The displacement is the distance in 
bytes from the location indicated in the 
BASE TABLE roll group to the location of 
the variable. 

During the allocation of COMMON, the 
third word of each group holds a relative 
address until all of a COMMON block has 
been allocated, when the relative address 
is replaced by the pointer as indicated 
above. During the allocation of EQUIVA
LENCE variables, relative addresses within 
the EQUIVALENCE variables are used and then 
replaced by pointers as for COMMON. 

ROLL 62: CODE ROL~ 

This roll holds the object code 
generated by the compiler, in binary. This 
roll is first used in Gen, where the object 
code for the entire source module is built 
up on the roll. 

The group size for the CODE roll is 
eight bytes. Two types of groups are 
placed on the roll during the operations of 
Gen. The first type of group is added to 
the roll by the instructions IEYBIN, IEYBIM 
and IEYBID. In this type of group, the 
binary instruction is left-justified in the 
eight bytes. When the instruction occupie
sonly two bytes, the first word is com
pleted with zeros. When the instruction 
occupies two or four bytes, the second word 
of the group holds a pointer to the defin
ing group for the operand of the instruc
tion. When the instruction is a 6-byte 
instruction, the last two bytes of the 
group contain zero, and no pointer to the 



operand appears. A unique value is placed 
on the CODE roll by these instructions to 
indicate the beginning of a new control 
section. 

The second type of group entered on the 
CODE roll appears as a result of the 
operation of one of the instructions IEYPOC 
and IEYMOC. These groups do not observe 
the 8-byte group size of the roll, but 
rather beqin with a word containinq a 
special value in the upper two bytes; this 
value indicates an unusual group. The 
lower two bytes of this word contain the 
number of words in the following informa
tion. This word is followed by the binary 
instructions. 

The object module 
from this roll by the 
compiler. 

code is written out 
Exit phase of the 

ROLL 63: AFTER POLISH ROLL 

This roll is constructed in Parse, 
remains untouched until Gen, and is de
stroyed in that phase. 

The AFTER POLISH roll holds the Polish 
notation produced by Parse. The Polish for 
one statement is moved off of the POLISH 
roll and added to this roll when it is 
completed; thus, at the end of Parse, the 
Polish notation for the entire source 
module is on this roll. 

In Gen, the Polish notation is returned 
to the POLISH roll from the AFTER POLISH 
ru~~ Iur the production of object code. At 
the conclusion of the Gen phase, the roll 
is empty and is no longer required by the 
compiler. The group size for this roll is 
four bytes. 

WORK AND EXIT ROLLS 

Because of the nature and frequency of 
their use, the WORK roll and the EXIT roll 
are assigned permanent storage locations in 
IEYROL, which is distinct from the storage 
area reserved for all other rolls. As a 
result, these rolls may never be reserved 
and are manipulated differently by the POP 
instructions. The group stats and the 
items BASE and TOP are not maintained for 
these rolls. The only control item main
tained for these rolls corresponds to the 
item BOTTOM, and is carried in the general 
register WRKADR (register 4) for the WORK 
roll and EXTADR (register 5) for the EXIT 
roll. 

WORK ROLL 

The WORK roll is often used to hold 
intermediate values. The group size for 
this roll is four bytes. The name Wo is 
applied to the bottom of the WORK roll (the 
last meaningful word), W1 refers to the 
next-to-bottom group on the WORK roll, etc. 
In the POP instructions these names are 
used liberally. and must be interpreted 
wi th care. Lo;'ding a value i.nto WO is 
storage into the next available word, 
(WRKADR) + 4, lIDless specj fica lly otherwise 
indicated, while storage from WO t:o anot.her 
location involves access to the contents of 
the last word on the roll, (WRKADR). 
WRKADR is normally incremented followinq a 
load operation and decr~mented following a 
store. 

EXIT ROLL 

The EXIT roll holds exit addresses for 
subroutines and, thereby, pr"ovides for the 
recursion used throughout the compiler. 
The ANSWER BOX is also recorded on the EXIT 
roll. The group size for the EXIT roll is 
twelve bytes. The first byte is the ANSWER 
BOX. The rem3lning information on the roll 
is recorded when a subroutine jump is 
performed in the compiler code; it is used 
to return to the instruction following the 
jump when t.he ~>ubroutine has completed its 
operation. 

The values placed on the EXIT roll 
differ, depending on the way in which the 
subrout1ne jump is performed. As a result 
of the interpn~tation of the IEY,)SB POP 
instruction, 1:he last three bytes of t.he 
first word contain the location of the 
IEYJSB plus two (the location of the POP 
instruction following the IEYJSB, the 
return point); the second word of the group 
holds an address within the IEYJSB subrou
tine; the third word contains the location 
of the global label for the routine from 
which the subroutine jump was made plus two 
(the value of LOCAL JUMP BASE in that 
rout.ine) • 

As an example of how a subroutine jump 
is accomplished by means of machine lan
guage instructions, the following instruc
tions are used: 

L TMP,G0052J 

BAL ADDR,JSB STORE IN EXIT 

to replace the POP instruction 

IEYJSB G0052J 

Appendix B: Rolls Used in the Compiler 161 



In this case, no value is placed in the 
last three bytes of the first word; the 
second word holds the address of the 
instruction following the BAL; the third 
word holds the location of the global label 
immediately preceding the BAL plus two (the 
value of POPADR when the jump is taken, 
which is also the value of LOCAL JUMP BASE, 

162 

the base address to be used for local jumps 
in the routine from which the subroutine 
jump was made). 

On return from a subroutine, these 
values are used to restore POPADR and LOCAL 
JUMP BASE and they are pruned f rom the EXIT 
roll. 



This appendix shows the format of the 
Polish notation which is generated by the 
compiler for each type of statement in the 
FORTRAN IV (G) language. 

GENERAL FORM 

The format of the Polish notation 
depends on the statement type, but always 
terminates with the control driver which 
indicates the type of statement: 

4 bytes 
r------------------------------~ 

r--------------:---------------lt:~!!:~e~~r 
I • I L 
~------------------------------~, 
~------------------------------~ 
Icontrol driver I 
~------------------------------~ 
Istatement number I l ______________________________ J 

The statement number is an integer whose 
value is increased by one for each state
ment processed. This value is used only 
within the compiler. 

LABELED STATEMENTS 

For labeled statements, a pointer to the 
label is inserted between the control driv
er and the statement number: 

4 bytes 

~==============================1'{ I • I 
I • I Polish for 

~-------------~---------------~\statement 
r------------------------------~ 
Icontrol driver I 
~------------------------------~ 
Ilabel I 
~------------------------------~ 
Ipointer to statement label I 
~------------------------------~ 
Istatement number I l ______________________________ J 

The label information is not included in 
the following descriptions of the Polish 
notation for individual statement types. 

APPENDIX C: POLISH NOTATION FORMATS 

ARRAY REFERENCES 

The Polish notation for an array 
reference whose subscripts are all linear 
functions of DO variables~ con~ists simply 
of a pointer to the appropriate group on 
the ARRAY REF roll. The Polish notation 
generated for all other references to an 
array element is: 

4 bytes 
r-----------------------------, 
larray driver I 
~-----------------------------~ 
lpointer to array I 
~----------------------------~, 

r--------------~--------------1IpOliSh for 
, • I ) subscript 1 

~--------------~--------------~\ 
~-----------------------------~ 
Imultiplier , 
~-----------------------------~ 
,argument driver I 
~-----------------------------~, 

t--------------~--------------1Ipolish for 

, • I subscript 2 

l--------------:--------------~\ 
~----------------------------~ 
Imultiplier , 
~-----------------------------~ 
largument driver , 
t-----------------------------1 , , 
I I 
I I 
~-----------------------------~. 
t--------------~--------------1Ipolish for 

I • I subscript 7 

I . 1\ 
~-----------------------------~ 
~-----------------------------~ 
I multiplier I 
~-----------------------------~ 
largument driver I 
~-----------------------------~ 
,dummy array pointer I L _____________________________ J 

The pointer to the array may indicate 
either (1) the ARRAY roll, when none of the 
subscripts used in th~ array reference are 
linear functions of DO variables, or (2) 
the ARRAY REF roll, when some, but not 
all, of the subscripts are linear functions 
of DO variables. The subscripts for which 
Polish notation appears are those which are 

Appendix C: Polish Notation Formats 163 



not linear functions of DO variables. Only 
the required number of subscripts appear. 

The multiplier following each subscript 
is the multiplier for the corresponding 
array dimension. This value is an integer 
unless the array is a dummy including dummy 
dimensions which affect this array dimen
sion; in this case, the multiplier is 
represented by a pointer to the TEMP AND 
CONST roll. 

ENTRY STATEMENT 

The Polish notation generated for the 
ENTRY statement is: 

4 bytes 
r-----------------------------------------, 
Ipointer to ENTRY name I 
~-----------------------------------------~ 
I ENTRY driver I 
t-----------------------------------------~ 
Istatement number I l _________________________________________ J 

The pointer points to the ENTRY NAMES 
roll. 

ASSIGN STATEMENT 

The Polish notation generated for the 
ASSIGN statement is: 

4 bytes 
r-----------------------------------------, 
I pointer to label I 
t-----------------------------------------~ 
Ipointer to variable I 
~-----------------------------------------~ 
I ASSIGN driver I 
t-----------------------------------------~ 
Istatement number I l _________________________________________ J 

ASSIGNED GO TO STATEMENT 

The Polish notation generated for this 
statement is: 

4 bytes 
r-----------------------------------------, 
Ipointer to variable I 
t-----------------------------------------~ 
lassigned GO TO driver I 
t-----------------------------------------~ 
Istatement number I l _________________________________________ J 

164 

LOGICAL IF STATEMENT 

The Polish notation generated for this 
statement is: 

4 bytes 
r------------------------------, 
t--------------~---------------1i Polish for 

I • I logical 

~--------------~---------------~\expression 
~------------------------------~ 
t--------------~---------------1ipOliSh for 

I • I ,statement 

~--------------~---------------~\ ·S· 
~------------------------------~' 
Ilogical IF driver I 
~------------------------------~ 
Istatement number I l ______________________________ J 

RETURN STATEMENT 

The following Polish notation is pro
duced for the RETURN statement: 

4 bytes 
r-----------------------------------------, 
lpointer to I I 
~-----------------------------------------~ 
I RETURN dri ver I 
~-----------------------------------------1 
Istatement number I l _________________________________________ J 

The pointer to I does not appear if the 
statement is of the form RETURN. 

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT 

The Polish notation produced for this 
sta tement is: 

4 bytes 
r------------------------------, 
lpointer to variable to be set I 
~--------------------------~---~ 
t--------------~---------------11 Polish for 

I • I right side 

~--------------~---------------~\ 
~-----------------------------~/ 
lassignment driver I 
~------------------------------~ 
Istatement number I L ______________________________ J 



The Polish notation for the right side 
of the assignment statement is in the 
proper form for an expression, and includes 
array references where they appear in the 
source statement. The variable to be set 
may also be an array element; in this case, 
the pointer to the variable to be set is 
replaced by the Polish notation for an 
array reference. 

UNCONDITIONAL GO TO STATEMENT 

The Polish notation produced for this 
statement is: 

4 bytes 
r-----------------------------------------, 
Ipointer to label I 
~----------------------------------------~ 
IGO TO driver I 
~-----------------------------------------~ 
Istatement number I l _________________________________________ J 

COMPUTED GO TO STATEMENT 

The following Polish notation is pro
duced for this statement: 

4 bytes 
r------------------------------, 
Ipointer to xl I 
~-----------------------------i 
Ipointer to x2 I 
~-----------------------------i 
I I branch 
I I points 
I I 
~------------------------------~ 
lpointer to xn I 
~-----------------------------~ 
Inumber of branch points I 
~------------------------------i 
lpointer to variable I 
~-----------------------------~ 
Icomputed GO TO driver I 
~------------------------------i 
Istatement number I l ______________________________ J 

ARITHMETIC IF STATEMENT 

The follo~ing Polish notation is pro
duced for this statement: 

4 bytes 
r------------------------------, 
t--------------~---------------1/pOliSh for 

I • . j' expression 

t--------------~---------------~, 
~------------------------------~, 

t~~~~~;-~~-;~-----------------l{~f~~: 
t~i~~~;-~~-;3-----------------1\ 
r------------------------------~ 
Ipointer to label next stmt. I 
~------------------------------~ 
IIF driver I 
~------------------------------~ 
Istatement number I l ______________________ - _______ J 

The label of the next statement is 
inserted following the IF driver because 
the next statement may be one of the branch 
points referenced; if it is, code will be 
generated to fall through to that statement 
in the appropriate case(s). 

DO STATEMENT 

The following is the Polish notation 
produced for the statement DO x i = ml. rn2, 
m3: 

4 bytes 
r-----------------------------------------, 
lpointer to M~ (test value) I 
r-----------------------------------------~ 
lpointer to M3 (increment) I 
~-----------------------------------------~ 
Ipointer to LOOP DATA roll I 
~-----------------------------------------~ 
lpointer to LBL roll I 
~-----------------------------------------~ 
100 driver I 
~-----------------------------------------~ 
Istatement number I l--_______________________________________ J 

The pointer to m3 appears, even if the 
increment value is implied. 

Appendix C: Polish Notation Formats 165 



CONTINUE STATEMENT 

The Polish notation produced for this 
statement is: 

" bytes 
r-----------------------------------------, 
ICONTINUE driver I 
.-----------------------------------------~ 
Istatement number I l _________________________________________ J , 

PAUSE AND STOP STATEMENTS 

The Polish notation produced for these 
statements is: 

" bytes 
r-----------------------------------------, 
Ipointer to constant I 
~----------------------------------------~ 
IPAUSE or STOP driver I 
~-----------------------------------------~ 
Istatement number I l _________________________________________ J 

the 
the 

For both the PAUSE statement and 
STOP statement, the constant appears on 
LITERAL CONST roll, regardless of 
nature in the source statement. 
constant appears in the statement, 
pointer to the constant points to 
literal constant zero. 

its 
If no 

the 
the 

END STATEMENT 

The Polish notation generated for the 
END statement is: 

" bytes 
r-----------------------------------------, 
I END driver I 
~-----------------------------------------~ 
Istatement number I l _________________________________________ J 

BLOCK DATA STATEMENT 

The Polish notation generated for the 
BLOCK DATA statement is: 

" bytes 
r-----------------------------------------, 
IBLOCK DATA driver I 
~----------------------------------------~ 
Istatement number I l _________________________________________ J 

166 

DATA STATEMENT AND DATA IN EXPLICIT 
SPECIFICATION STATEMENTS 

For each statement (DATA or Explicit 
specification) in which data values for 
variables are specified, a Polish record is 
produced. This record ends with a DATA 
driver and a statement number. For each 
variable initialized by the statement, the 
following appears: 

4 bytes 
r-----------------------------------------, 
lpointer to variable I 
~-----------------------------------------~ 
I offset I l _________________________________________ J 

The offset is the element number at whicr. 
initialization begins; if it does not 
apply, this word contains the value zero. 

This information is followed by the pair 
of groups 

" bytes 
r-----------------------------------------, 
Irepetition count I 
~----------------------------------------~ 
lpointer to constant I l _________________________________________ J 

or, when the constant is literal, the three 
groups 

" bytes 
r-----------------------------------------, 
Irepetition count I 
~-----------------------------------------~ 
lpointer to constant I 
~-----------------------------------------~ 
Inumber of elements I L-________________________________________ J 

where the last group indicates the number 
of elements of an array to be filled by the 
literal constant. For array initializa
tion, one or more of the -constant- groups 
may appear. 



I/O LIST 

The Polish notation for an I/O List 
contains pointers to the variables in the 
list, Polish notation for array references 
where they appear, and pOinters and drivers 
to indicate implied DO loops. 

The I/O list 

«C(I),I=l,lO),A,B) 

for example, results in the following 
Polish notation: 

" bytes 
r----------------------------------------, 
Ipointer to Ma (test value) I 
~----------------------------------------~ 
Ipointer to M3 (increment) I 
~-----------------------------------------~ 
Ipointer to LOOP DATA roll I 
~-----------------------------------------~ 
limplied DO driver I 
~----------------------------------------~ 
Ipointer to C I 
.-----------------------------------------~ ,1 (number of subscrifts) I 
~----------------------------------------~ 
'pointer to I (subscript) I 
~-----------------------------------------~ 
largument driver I 
~-----------------------------------------~ 
larray driver I 
~----------------------.-------------------~ 
IIOL DO Close driver I 
r-----------------------------------------. 
,pointer to A I 
~----------------------------------------. 
'pointer to B I L-________________________________________ J 

The area between, and including, the 
implied DO driver and the array driver is 
an array reference, as it would appear 
wherever C(I) was referred to in source 
module statements. 

INPUT STATEMENTS 

The following paragraphs discuss the 
Polish notation produced for all forms of 
the READ statement except direct access. 

FORMATTED READ 

For the form READ (a,b) list, the for
matted READ, the Polish notation generated 
is: 

" bytes 
r------------------------------, 
lpointer to a (data set) , 
, I t------------------------------, 
IFORMAT driver I 
~------------------------------~ 
I point er t" t;nRMAT I 
r----- ------------------------~ 
IEND~ driver I 
~------------------------------~ 
Ipointer to END label i 
.-----------------------------~~ 
IERRr- driver I 
t------------------------------~ 
Ipointer to ERR label 
.------------------------------~ 
IIOL driver I •. ---------------.---------------~ 
t--------------~---------------1ipOliSh for 

I . 1'1/0 list 
I • 1 ( 

r------------------------------i' 
.--------.----------------------~' 
Icode word I 
.------------------------------~ 
IIBCOM entry, formatted READ I 
t------------------------------~ 
Ipointer to rBCOM I 
.------------------------------~ 
IREAD/WRITE flag, zero= WRITE, I 
I nonzero~ READ I 
r------------------------------i 
IREAD WRITE driver I 
r---------------·---------------i 
I statement number I L. _____________________________ J 

The pointer to the FORMAT points either 
to the label of the FORMAT statement or to 
the array in which the FORMAT is stored. 
The END= and ERR= drivers and the pointers 
following them appear only if the END and 
ERR options a:!:'e used in the statement; 
either one or both may appear, and in any 
order with respect to each other~ If no 
I/O list appears in the statement, the 
Polish for the I/O list is omitted, but the 
IOL driver appears nonetheless. 

The code word contains zero in its 
high-order three bytes, and, in its low
order byte, a unique code specifying the 
operation and unit for the input/output 
statement. This code word distinguishes 
among the various READ statements and is 
inserted in the code produced for them. 

Input/output operations are perfo.t'med by 
the RUNTIME routines. IBCOM is a transfer 
routine in RUNTIME through which all input/ 
ou~put except NAMELIST is performed. The 
IBCOM entry for formatted READ indicates an 
entry point to this routine. (See Appendix 
o for further discussion of IBCOMe) The 
p)inter to IBCOM points to the routine on 
the GLOBAL SPROG roll. 

Appe.ndix C: Polish Notation F'o:cmats 167 



NAMELIST READ 

For the form READ (a,x), the NAMELIST 
RE~D, the following changes are made to the 
Polish notation given above: 

1. The FORMAT driver is replaced by a 
NAMELIST driver. 

2. The pointer to the 'ORMAT is replaced 
by a pointer to the NA~ELIST. 

3. The code word value is changed. 

4. The IBCOM entry is replaoed by the 
value zero, since NAMELIST input/ 
output is not handled through IBCOM. 

5. The pointer to IBCOM is replaced by a 
pointer to the NAMELIST READ routine. 

6. No I/O list may appea~. 

UNFORMATTED READ 

For the form READ (a) list, the unfor
~atted READ, the following changes are made 
to the Polish notation given above: 

1. The FORMAT driver is remov€d. 

2. The pointer to the FORMAT is removed. 

3. The IBCOM entry, 
replaced by the 
matted READ. 

formatted READ, is 
IBCOM entry, unfor-

READ STANDARD UNIT 

For the form READ b, list, the standard 
unit READ statement, the follOWing changes 
are made to the Polish notation given 
above: 

1. No ENO= or ERR= drivers may appear, 
nor may the corresponding pointers to 
labels. 

2. The code word value is changed. 

OUTPUT STATEMENTS 

The fcllowing paragraphs discuss the 
Polish notation produced f~r all forms of 
the ~RITE statement except direct access, 
and for the PRINT and PUNCH statements. 

PORMATTED WRITE 

For the form WRITE 
formatted WRITE, the 
generated is: 

168 

(a,b) list, the 
Polish notation 

4 (lytes 
r------------------------------, 
Ipointe~ to a (data set) I 
.----- -------- --._- -------------_1 
IFORMAT driver 1 
t------------------------------i 
Ipointtr to FO~MAT I 
t---- .- -- ------ -----------------_1 
IEND= driver I 
t------------------------------~ 
Ipointer to END label I 
~------------------------------i 
IERR= driver I 
t------------------------------~ 
Ipointer to ERR label I 
~------------------------------~ 
IIOL driver t 
~------------------------------+ 
t--------------~---------------1~POliSh for 

I • 1,1/0 list 
I • I( 
~-------------------------------I, 
t------------------------------~; 
Icode word I 
t------------------------------~ 
\IBCOM entry, formatted WRITE' I 
t------------------------------i 
Ipointer to IBCOM I 
t------------------------------i 
IREAD/WRITE flag, zero= WRITE, I 
I nonzero= READ I 
t------------------~-----------i 
IREAD WRITE driver I 
t-----------·-------------------i 
Istatement number I L _____________________________ J 

The pointer to the FORMAT pOints either 
to the label of 'the FORMAT statement or to 
the array in which the FORMAT is stored. 
The END= and the ERR= drivers and the 
pointers following them appear only if the 
END and ERR options are used in the state
ment; either one or both may appear, and in 
any order relative to each other. If no 
I/O list appears in the statement, the 
Polish for the I/O list is omitted, but the 
IOL driver appears nonetheless. 

The code word contains zero in its 
high-order three bytes, and, in its low
order byte, a unique code specifying the 
operation and unit for the input/output' 
statement. This code word distinguishes 
among the various output statements and is 
inserted in the code produced for them. 

Input/output operations are performed by 
the RUNTIME routines. IBCOM is the initial 
entry of a transfer vector in IHCFCOMH 
through which all input/output except NAME
LIST is performed. (IBCPCOMB 1e further 
discussed in Appendix F.) The pointer to 



IBCOM points to the routine on the GLOBAL 
SPROG roll. 

NAMELIST WRITE 

For the form WRITE (a, x), the NAMELIST 
WRITE; the following changes are made to 
the Polish notation given above: 

1. The FORMAT driver is replaced by a 
NAMELIST driver. 

2. The pointer to the FeRMAT is replaced 
by a pointer to the NAMELIST. 

3. The code word value is changed. 

~ . 

5. 

6. 

The ISCOM entry is replaced by the 
value zero, since NAMELIST input/ 
output is not handled through IBCOM. . 

The pointer to IBCOM is replaced by a 
pointer to the NAMELIST WRITE routine. 

No I/O list may appear. 

UNFORMATTED WRITE 

For the form WRITE (a) list, the unfor
matted WRITE, the following changes are 
made to the Polish notation given above: 

1. The FORMAT driver is removed. 

2. The pointer to the FORMAT is removed. 

3. The IBCOM entry, furmatted WRITE, is 
replaced by the IBCCM entry, unfor
mat ted WRITE. 

PRINT 

The Polish notation generated for the 
form PRINT b, list is identical to that 
given for the formatted WRITE statement, 
with the following changes: 

1. No END= or ERR= drivers may appear, 
nor may the corresponding pointers to 
labels. 

2. The code word value is changed. 

PUNCH 

The Polish notat~on for the state~~nt 
PUNCH b, list is as given for the formatted 
WRITE with the following changes: 

1. No END= or ERR= drivers may appear, 
nor may the corresponding pointers to 
labels. 

2. The code word value is changed. 

The following paragraphs discuss the 
Polish notation produced for the direct 
access input/output statements. 

READ, DIRECT ACCESS 

For the forms READ (a'b,b) list and READ 
(a'r) lis~, th~ following Polish notation 
is generated: 

~ bytes 
r------------------------------, 
Ipointer to a (data set) I 
.------------------------------~ 
Idirect 10 driver I .--------- ---- ----- ---- -- - ---- --~ 
t--------------~---------------1/pOliSh for 

I . 1\ r I . I 
.------------------------------~ 
.------------------------------~ 
lexpression drLver 1 
.------------------------------~ 
i?01nCer LO b I 
.------------------------------~ 
IERR= driver I 
.------------------------------~ 
Ipointer to ERR label I 
.------------------------------i 
IIOL driver I 
.------------------------------1 
r--------------~---------------1tpoliSh for 
I • 1;1/0 list 
I • 1\ 
.------------------------------~J .------------------------------i' 
Icode word 1 

r------------------------------i 
IIBCOM entry, READ I 
~------------------------------i 
I po;_r,ter to IBCOM 1 

~------------------------------i 
J~EAD/WRITE flag, zero= WRITE, I 
I nonzero= READ I 
~------------------------------~ 
IREAD WRITE driver 1 

.------------------------------i 
Istatement number I l-_____________________________ J 

Appendix C: Polish Notation Formats 169 



The END= and ERR= drivers and the pcint
ers following them appear only if the END 
and ERR options are used in the source 
statement; either one or both may appear, 
and in any order with respect to each 
other. If b does not appear in the source 
statement (the second form), the corres
ponding pointer does not appear in the 
Polish notation. If the I/O list does not 
appear in the source statement, the Polish 
notatiou for the I/O list is omitted from 
the Polish, but the 10L driver appears 
nonetheless. 

The code word contains zero in its 
high-order three bytes, and, in its low
order byte, a unique code specifying the 
operation and unit for the input/output 
statement. This code word distinguishes 
the direct access statements from other 
input/output statements and is inserted in 
the cod~ produced for them. 

WRITE, DIRECT ACCESS 

The Polish notation produced for the 
forms WRITE (a'r,b) list and WRITE (air) 
list is identical to that produced for the 
corresponding forms of the READ, direct 
access statement with the following 
exceptions: 

1. The IBCOM entry, READ is replaced by 
the appropriate IBCOM ent.ry, WRITE. 

2. The value of the code word is changed. 

FIND 

The Polish notation produced for this 
statement is identical to that for an 
unformatted direct access READ statement 
given above, with the exception that the 
code word is changed to indicate the FIND 
statement. 

DEFINE FILE 

110 

The form of this statement is: 

DEFINE FILE at (m!,t1,f1,v1),a2 
(m2,12,f2,v2), ••• ,an(mn,1n,fn,vn) 

The Polish notation produced for it is: 

4 bytes 
r---------------------------, 
Ipointer to a1 1 
~---------------------------~ 
lpointer to m1 I 
.---------------------------~ 
Ipointer to 11 1 file 1 data .------ .. --------------------~ 
IE, L, or U I 
.---------------------------~ 
lpointer to v1 I 

.---------------------------~ lpointer to a2 I 

.---------------------------~ 
I I 
I l file 2 data 
I , 
.---------------------------~ 
1pointer to v2 I 
.---------------------------~ I , 
I I 
I I 
~------------------------ .. -- i 
lpointer to an , 
.---------------------------~ 
I "I 
I J file n data 
I 1 
.-----------------------~~--~ 
Ipointer to vn 1 

.---------------------------~ 
IDEFINE FILE driver 1 
~---------------------------~ 
Istatement number I l ___________________________ J 

where the fourth word of each set of file 
data holds the BCD character E, L, or U in 
the high-order byte and zeros in the 
remaining bytes. 

The Polish notation produced for END 
FILE is: 

.. bytes 
...----_._-----------------------------------, 
Ipointer to a (data set) i 
.-----------------------------------------~ IIBCOM entry for END FILE I 
r-----------------------------------------i 
Ipointer to IBCOM 1 
~----------------------------------------~ 
IBSREF driver 1 
.-----------------------------------------~ 
Istatement number 1 L-________________________________________ J 



!!EWIND STATEMENT 

The polish no~a~ion produced for the 
REWIND statement is identical to that for 
the END FILE statement with the exception 
that the IBCOM entry for END FILE is 
replaced by the IBCOM entry for REWIND. 

BACKSPACE STATEMENT 

The Polish notation produced for the 
BACKSPACE statement is identical to that 
for the END FILE statement, except that the 
TDr-tf'"\". __ .&.._ ... S! __ T:'t't..TT"\ 'r."lTT~ .! ____ , __ _.,-l L._= .&-t...., ..... 

... .u'--V!·! CO!! '-Ly .LVL .l.:.tL'UJ I: L.uL ..L~ L t:::'p..LC1~t:::U. U'j LIlt::: 

rBCOM entry for BACKSPACE. 

The Polish notation generated for a 
statement function is: 

4 bytes 
r------------------------------, 
Ipointer to function name I 
~------------------------------~ 
I I 
~------------------------------~ 
I I Polish for 
\ I right side 
I I 
~------------------------------~ 
\ I 
~------------------------------~ 
Istatpment function driver I 
~------------------------------~ 
\statement number I 
l ______________________________ J 

The Polish notation produced for the 
FUNCTION statement is: 

4 bytes 
r-----------------------------------------, 
\pointer to ENTRY name I 
~-----------------------------------------~ 
IFUNCTION driver I 
~-----------------------------------------~ 
Istatement number 1 L _________________________________________ J 

where the pOinter points to the ENTRY NAMES 
roll. 

The Polish notation generated for a 
reference to a function is: 

4 bytes 
r------------------------------, 
Isubprogram driver , 
t------------------------------1 
Ipointer to function name , 
~------------------------------~ 
Inumber of arguments I 
~------------------------------~ 
,expression driver , 
~------------------------------~I 
I I 
~----------------------------~-~ 
I , Polish for 
, , argument 1 
i i 
~------------------------------~ 
lexpression driver I 
~------------------------------~ 
I , 
~------------------------------~ 
I , Polish for 
, , argument. 2 
I I 
~------------------------------~ 
lexpression driver \ 
~------------------------------~ 
I I 
I , 
, I 
~------------------------------~ 
I I 
~------------------------------~ 
I I Polish for 
I , argument n , , 
~------------------------------~ 
lexpression driver , 
~------------------------------~ 
,pointer to function name I L ______________________________ J 

This Polish notation is part of the 
Polish notation for the expression in which 
the function reference occurs. 

SUBROUTINE STATEMENT 

The Polish notation generated for the 
SUBROUTINE statement is: 

4 bytes 
r-----------------------------------------, 
Ipointer to ENTRY name , 
~-----------------------------------------~ 
lSUBROUTINE driver , 
.-----------------------------------------~ 
Istatement number , l _________________________________________ J 

where the pointer points to the ENTRY NAMES 
roll. 

Appendix C: Polish Notation Formats 171 



CALL STATEMENT 

The Polish notation for the CALL state
ment is: 

4 bytes 
r------------------------------, 
Isubprogram driver I 
.r------------------------------~ 
lpointer to subprogram name I 
r------------------------------~ 
Inumber of arguments I 
~------------------------------i 
lexpression driver I 
r------------------------------~ 
I I 
~------------------------------i 
I 
I I 
I 
r------------------------------~ 
lexpression driver I 
~------------------------------i 
I I 
~------------------------------~ 
I I 
I I 
I I 
r------------------------------i 
lexpression driver I 
~------------- ----------------i 
I I 
I I 
I I 
r------------------------------i 
I I 
~------------------------------~ 
I I 
I I 
, I 
~------------------------------i 
lexpression driver I 
r------------------------------~ 
Ipointer to subprogram name I 

~------------------------------i 
Ipointer to xl I 
~-----------------------.-------~ 
Ipointer to x2 I 
~------------------------------~ 
I I 
I , 
I , 
~------------------------------~ 
Ipointer to xn , 
r------------------------------~ 
'number of label arguments , 
~------------------------------~ 
Icomputed GO TO driver I 
r------------------------------~ 
'CALL driver , 
~------------------------------i 
Istatement number I l ______________________________ J 

Polish for 
argument 1 

Polish for 
argument 2 

Polish for 
argument n 

label 
arguments 

Label arguments are not counted in the 
"number of arguments" which appears as the 
third word of the Polish notation, and no 

172 

representation of them appears in the 
Polish notation for the arguments. All 
label arguments are grouped together at the 
bottom of the Polish as indicated. If no 
label argUments exist, the section from the 
"pointer to xl" to and including the "com
puted GO TO driver" does not appear. 

DEBUG FACILITY STATEMENTS 

The following paragraphs describe the 
Polish notation produced for the statements 
of the debug facility. 

AT 

The Polish notation generated for the AT 
statement is: 

4 bytes 
r-----------------------------------------, 
, pointer to AT group I 
~-----------------------------------------i 
I AT driver I 
~-----------------------------------------i 
, statement number I l _________________________________________ J 

The pointer points to the AT roll group 
which contains the information relating to 
the AT statement represented by the Polish 
notation. 

TRACE ON 

The Polish notation generated for the 
TRACE ON statement is: 

4 bytes 
r-----------------------------------------, 
I TRACE ON driver I 
~-----------------------------------------i 
, statement number I l _________________________________________ J 

TRACE OFF 

The Polish notation generated for the 
TRACE OFF statement is: 

4 bytes 
r-----------------------------------------, 
I TRACE OFF driver I 
~-----------------------------------------i 
I statement number I l _________________________________________ J 



DISPLAY 

The Polish notation generated for the 
DISPLAY statement is: 

4 bytes 
r-----------------------------------------, 
I pointer to NAMELIST WRITE I 
~-----------------------------------------~ 
! 0 I 
~-----------------------------------------~ 
I NAMELIST pointer I 
~----------------------------------------~ 
I DISPLAY driver I 
~-----------------------------------------~ 
! statement number I L _________________________________________ J 

where the pointer ~o NAMELIST WRITE points 
to this routine on th GLOBAL SPROG roll; 
the value zero is placed on the roll for 
conformity with other NAMELIST input/output 
statements; the NAMEI.:' ST pointer pOints to 
a group constructed for the DISPLAY state
ment on the NA~£LIST NAMES roll. 

Appendix C: Polish Notation Formats 173 



Tnl.S appendix describes the code pro
duced by the FORTRAN IV (G) compiler for 
various types of source roodul~ statements. 

ERANCHES 

All branch instructions in the object 
roodule consist of a load from the branch 
table, followed by a BCR instruction, eith
er conditional or unconditional, which uses 
the branch table value as its target. 

The production of this code depends on 
the operation of Allocate, which replaces 
all jump target labels on the L8L roll with 
~ointers to entries in the obj~ct module 
branch table. Using this information, Gen 
can write the load and branch instructions 
even though the address of the target may 
not yet be known. 

When Gen ericounters a labeled statement 
which is a jump target, it sets the appro
priate entry in the branch table to the 
address of the first instruction it pro
duces for that statement. 

The following code is generated for the 
Computed Go To statement: 

L 
SlL 
BALR 
LTR 
BNH 
LA 
CR 
BH 
L 
BR 

15,variable 
15,2 
1q,0 
15,15 
IIn+22(0,lQ) 
1.lIn(0,0) 
15,1 
"n+22(0,111) 
1,18(15,1") 
1 

n address constants 

where variable is the computed Go To vari
able, n is the number of branchpoints, and 
Qn is the length of the list of n address 
constants. 

The use 
program can 
example: 

nf a no loon in a FOkTRAN 
be de;~rib~dLby-the foll~ing 

DO 5 I ml,m2_m3 

5 CONTINUE 

When the DO statement is processed dur
ing phase 4, the following takes place: 

1. The code 

L RO,ml 
A ST RO,l 

is generated, where the label A is 
constructed by Gen. 

2. The address of the instruction labeled 
A is placed in the branch table. 

3. An entry is made on the DO LOOPS OPEN 
roll which contains pointers to m2, 
m3, the label A, I, and the label 5. 

On receiving the Polish notation for the 
CONTINUE statement in the example, phase Q 
produces the following code: 

L 
L 
L 
L 
BXLE 

RO,I 
Rl, branch table 
R2,m3 
R3,m2 
RO,R2,0(Rl) 

where the load from the branch table sets 
Rl to the address of the created label A. 
When this code has been completed, phase Q 
removes the bottom entry from the 00 LOOPS 
OPEN roll. 

Appendix 01 Object Code Produced by the Compiler 115 



STATEMENT FUNCTION§ 

The following code is generated at 
beginning of each statement function: 

STM 2,3,18(15) 
STM 6,12.26(15) 
LR 1,14 
LR 9,1 
LR 6,15 
B 54(0,15) 

nine-word buffer 

the 

'rhe buffer is followed oy the code for 
the statement function itself, including 
the code to load the return value. The 
following code closes the statement 
function: 

LR 
LM 
LM 
BR 

14,1 
2,3,18(6) 
6,12,26(6) 
14 

SUBROUTINE AND FUnCTION SUBPROGR~S 

The following code is generated to save 
required infonnation at the main entry to 
each SUBROUTINE and FUNCTICN subprogram: 

B X(0,15) 
DC AL1(length of Ident) 
DC CLn(Ident) 
STM 14,12,12(13) 
LM 2,3,40(15) 
LR 4,13 
L 13,36(0,15) 
ST 13,8(0,4) 
5TM 3,4,0(13) 
BR 2 
DC (ADDRESS SAVE AREA) 
DC (ADDRESS PRCLOGUE) 
DC (ADDRESS EPILOGUE) 

This code is followed by th~ following 
code for saving required info~ation for 
each of the ENTRYs to the subprogram (the 
sequence of code appears once for each 
ENTRY, in the order of the ENTRYs): 

176 

B X(O, 1~) 
DC ALIClength of Ident) 
DC CLn(ldent) 
STM 14,12,12(1)) 
LM 2.3,32(1':» 
L 15,2fHO,lS) 
B 20(0, l~) 
DC (ADDRESS MAIN ENTRY) 
DC (ADDRESS PROLOGUE) 
DC (ADDRESS EP ILOGUE) 

The save code for the ENTRYs to the 
subprogram is followed hy a PROLOGUE, Which 
transfers arguments to the subprogram, and 
an EPILOGUE, which returns arguments to the 
calling routine for the main entry to the 
SUbprogram and for each ENTRY to the 
subprogram. 

The following code is produced 
RETURN statement: 

5R 15,15 
L 14,0(0,13) 
ER 14 

for the 

which branches to the appropriate EPILOGUE. 

The following code is produced for the 
RETURN I statement: 

L 
SLL 
L 
BR 

15,1 
15,2 
14, OCO, 13) 
14 

which also branches to the appropriatE 
EPILOGUE. 

The PROLOGUE code generated for each 
entry point to the subprogram moves argu
ments 35 required and branches to the 
entry. The following code is generated to 
move each call by name argument: 

L 2,n(0,1) 
ST 2,global dmy 

where n is the argument number (the argu
ments for each entry point are nUlllbered 
from one) multiplied by four. 

The following code is generated to move 
each call by value argument: 

L 2,n(O,l) 
MVC global dmy(x),0(2) 

where n is the argument number multiplied 
by four, and x is the size of the dummy. 

Code to calculate dummy dimensions fol
lows the code to move arguments. 



The following code is generated at 
close of all PROLOGUEs: 

BALR 2.0 
L 3,6(0,2) 
BR 3 

DC (ADDRESS OF CODE ENTRY POINT) 

the The EPILOGUE code generated for each 
entry point to a subprogram moves arguments 
back to the calling routine and returns to 
it, as dictated by the RETURN or RETURN I 
statement. 

Appendix DI Object Code Produced by tbe COlipiler 176.1 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

The first instructions in each EPILOGUE 
are: 

L 
L 

1~4(O;13) 

1,24(0,1) 

The following code is generated 
return each call by value argument: 

L 
MVC 

""") _ '" 1 \ 
L,U\V, ~, 

O(x,2),global dmy 

to 

where n is the argument number multiplied 
by four and x is the size of the dummy. 

For FUNCTION subprograms, the 
instruction is generated: 

Lx O,entry name 

following 

where x is the instruction mode. If the 
FUNCTION is complex, two load instr1lctions 
are required. 

The following code is generated for the 

FORMATTED READ AN') WRITE STATEMENrS 

The code prodUCed for these statements 

CNOP 
L 
BAL 
DC 
DC 
DC 
DC 

where: 

PI 

UI 

0,4 
15, =VCIBCOM#) 
14,N(15) 
XLO.4'PI',XLO.4'UI',AL3(UNIT) 
AL1(FI),AL3(FORMAT) 
AL4(EOFADD' 
AL4(ERRADDl 

"optional" 
"optional" 

o if' neither 
specified 

EOF nor ERR 

is specified 

is 

1 if EOF onl '! 

2 if ERR only 
3 if both 
specified 

is specified 
EOF and ERR are 

o if unit is an integer constant 
1 if unit is a variable name 
4 if unit is the standard system 
unit 

closing of each EPILOGUE: FI X'OO' if FORMAT' is a statement 

L 
L 
LM 
MVI 
fiR 

13,4(0,13) 
14,12(0,13) 
2,12,2 P {13) 
12(13),255 
14 

The following paragraphs describe the 
code produced for the FORTRAN input/output 
statements. The generated instructions set 
up necessary parameters and branch into the 
IRCOM# transfer table. This table has the 
following format: 

IBCOM# Main entry, formatted READ 
+4 Main entry, formatted WRITE 
+8 Second list item, forn1atten 

+12 Second list array, formatted 
+16 Final entry, end of 1/0 list 
+20 Main entry, unforwatted ~EAD 
+24 Main entry, unformatted WRITE 
+28 Second list item, unformatted 
+32 Second list array, unformatted 
+36 Final entry, end of I/O list 
+40 Backspace tape 
+44 Rewind tape 
+48 Write tapemark 
+52 STOP 
+56 PAUSE 
+bO IBERR execution error monitor 
+64 IBFINT interruption processor 
+68 IBEXIT job termination 

label 
X'Ol' if FORMAT is an array name 

N 0 for READ 
4 for WRITE 

UI = 4 is used for debug and for READ b, 
list, PRINT b, list and PUNCH b, list. 

SECOND LI ST I TEM, FORr1.~TTED 

The code produced is: 

L 15,=V(IBCOM#) 
BAL 14,8(15) 
DC XL1'L',LXO.4'T'.XLO.4'X' 

XLO. 4 • B' , xLl. 4' D' 

where: 

L the size in bytes of the item 

T 2 for a logical 1-byte item 
3 for a logical fullword item 
4 for a halfword integer item 
5 for a full word integer item 
6 for a double-precision real item 
7 for a singl~-precision real item 
8 for a double-precision complex 
item 
9 for a single-precision complex 
item 
A for a literal item (not currently 
compiler-generated) 

Aopendix D: Object Code Produced by the Compiler 177 



X, a, and D are, respectively, the 
index, base, and displacement .which 
specify the item address. 

SECOND LIST ARRAY, FORMATTED 

The code produced is: 

15,=V(IBCOM#) L 
6AL 
DC 
DC 

14,12(15) 
LX1'SPAN',AL3(ADDRESS) 
XL1'L',XLO.4'T',XL2.4'ELEMENTS' 

where: 

SPAN (not used) 

ADDRESS = the beginning location of the 
array 

L the size in bytes of the array 
element 

T = the values given for 

ELEMENTS = the number of 
array 

FINAL LIST ENTRY, FORMATTED 

The code produced is: 

L 
BAL 

15,=V(IBCOM#) 
14,16(15) . 

items 

elements in 

UNFORMATTED READ AND WRITE STATEMENTS 

the 

The code produced for these statements 
1,s: 

CNOP 
L 
SAL 
DC 
DC 
DC 

0, 4 
15,=V(IBCOM#) 
14,N(15) 
XLO.4'PI',XLO.4'UI,AL3(UNIT) 
AL4(EOFADD) "optional" 
AL~(ERRADD) "optional" 

where: 

PI, UI, UNIT, EOFADD and ERRADD have the 
same values as those given in the for
matted READ/WRITE definition. 

178 

N = 20 for READ 
= 24 for WRITE 

SECOND LIST ITEM, UNFORMATTED 

The code produced is: 

L 
BAL 
DC 

where: 

15,=V(IBCOM#) 
14,28 (15) 
XL1'L',XLO.4'0',XLO.4'X', 
XLO.4'B',XL1.4'D' 

L = the size in bytes of the item 

X. Band D are, respectively, the 
index, base, and displacement which 
specify ~he address of the item. 

SECOND LIST ARRAY, UNFORMATTED 

The code produced is: 

L 15,=V(IBCOM#) 
BAL 14, 32 (L) 
DC XL1'SPAN',AL3(ADDRESS) 
DC XL1'L',AL3(ELEMENTS) 

where SPAN, ADDRESS, L, and ELEMENTS have 
the meanings described in second list 
array, formatted. 

FINAL LIST ENTRY, UNFORMATTED 

The code produced is: 

L 15,=V(IBCOM#) 
BAL 14,36(15) 

BACKSPACE, REWIND, AND WRITE TAPEMARK 

The code produced is: 

CNOP 
L 
BAL 
DC 

where: 

0,4 
15,=V(IBCOMtt) 
14,N(15) 
XL1'FLAG', AL3(UNIT) 

FLAG = 0 if unit is an integer 
= any other bit pattern if unit is 

a variable. 

N = 40 for BACKSPACE 
= 44 for REWIND 
= 48 for write tapemark 



STOP AND PAUSE STATEMENTS 

The code produced for these statements 
is: 

L 
BAL 
DC 
DC 

where: 

15,=V(IBCOM#) 
l4,N(15) 
ALl (LENGTH) 
C'TEXT' 

LENGTH is the number of bytes in the 
'TEXT' message 

TEXT is an alphameric number or message 
(TEXT '00404040FO' if the STOP or 
PAUSE message is blank). 

N 52 for STOP 
56 for PAUSE 

NAMELIST READ AND WRITE 

The code produced is:. 

CNOP 
L 
BAL 
DC 
DC 
DC 
DC 

where: 

0,4 
l5,=V(FWRNLi> 
14,0 (15) 
XLO.4'PI',XLO.4'OI',AL3CUNIT) 
AL4 (NAMELIST) 
AL4CEOFADD) 
AL4 ( ERRADD) 

PI, 01, and UNIT are as described for 
formatted READ and WRITE 

• The "L 
write; 
"L 

l5,~V(FWRNL*)n shown is 
the code produced for read 

l5,+V{FRDNLt).n 

DEFINE FILE STATEMENT 

for 
is 

The form of the parameters specified in 
the statement is: 

The following code is generated in the 
object module prologue: 

LA 
L 
BALR 

where: 

L = 15 

R2 = 14 

R1.,LIST 
L,=V(DIOCS#) 
R2 ,L 

The following parameter list is also 
generated: 

DC 
DC 
DC 

DC 
DC 
DC 

X'ai.' iJ'..L3(ml.) 
C' f 1. ' , AL3 (r 1.) 
X'00',AL3(v1.) 

X'an',AL3(mn) _.L . "'T~I_ " \.. - l.n - ,I'UJJ \Ln' 
X'SO',AL3(vn ) 

The third DC in the group i~ changed to 

DC X'01',AL3(vi) 

if the associated variable is a halfword 
variable. In the last group, it becomes 
X'81',AL3(vn) in this case. 

FIND STATEMENT 

The code pl"educed is: 

CNOP 
L 
BAL 
DC 
DC 

PI 

U1 

VI 

C 

0,4 
15, =VCIBCOM#) 
14,20(15) 
XLO.4'PI',XLO.4'OI',AL3(UNIT) 
XL1' VI' , AL3 (r) 

o if thp uni~ is a cons~an~ 

1 if the unit is a variable name 

00 if the record number is a 
constant 
01 if the record number is a vari
able name 

Note that 20 is the IBCOM entry point 
for an unformatted READ. 

DIRECT ACCESS READ AND WRITE STATEMENTS 

is: 
The code produced for these statements 

CNOP 
L 
BAL 
DC 
DC 
DC 
DC 

0.4 
15, =V (IBCOM i) 
14, N(lS) 
XLO.4'PI',XLO.4'UI'AL3(ONIT) 
AL1(FI),AL3(FORMAT) 
ALl (VI) ,AL3 (r) 
AL4(ERRADD) "may only appear for 
READ" 

Appendix D: Object Code Produced by the compiler 179 



where: 

PI 

UI 

FI 

= 8 if ERR is not specified 
A if ERR is specified, which is 
only possible for READ 

o if the unit is an integer 
constant 
1 if the unit is a variable name 

00 if the FORMAT is a statement 
label 

= 01 if the FORMAT is an array name 

VI = 00 if r (the record number) is a 
constant 
01 if r is a variable name 

The entry points which may appear (N) 
are 0, 4, 20, or 24. If 20 or 24 appears 
(indicating an unformatt_ed operation), the 
second DC does not appear. 

FORMAT STATEMENTS 

FORMAT statements are stored after lit
eral constants in the object module. 

The FORMAT specifications are recoded 
from their source module form so that each 
unit of information in the FORMAT statement 
occupies one byte of st.orage. Each integer 
which appears in the FORMAT statement 
(i.e., a scale factor, field width, number 
of fractional digits, repetition count) is 
converted to a l-byte binary value. Decim
al points used to separate field width from 
the number of fractional digits in the 
source module FORMAT statement are dropped; 
all other characters appearing in the 
source module statement are represented by 
l-byte hexadecimal codes. The following 
sections describe the encoding scheme which 
is used. 

FORMAT Beginning and End:.t~arentheses 

The beginning and ending parentheses of 
the FORMAT statement are represented by the 
hexadecimal codes 02 and 22, respectively. 

Slashes 

The slashes appearing in the FORMAT 
statement are represented by the hexadec
imal code lE. 

180 

Internal Parentheses 

Parentheses used to enclose groups of 
FORMAT specifications within the FORMAT 
statement are represented by the codes 04 
and lC for the left and right parenthesis, 
respectively. The code for the left paren
thesis is always followed by the l-byte 
value of the repetition count which pre
ceded the parenthesis in the source module 
statement. A value of one is inserted if 
no repetition count appeared. 

Repetition of Individual FORMAT 
specifications 

Whenever the source module FORMAT state
ment contains a field specification of the 
form aIw, aFw.d, aEw.d, aOw.d, or aAw, 
where the repetition count Wa W is present, 
the hexadecimal code 06. is produced to 
indicate the field repetition. This code 
is followed by the l-byte value of waw• 

I,F,E, and D FORMAT Codes 

The I and F FORMAT codes are represented 
by the hexadecimal values 10 and OA, re
spectively. The I code is followed by the 
l-byte field width value; the F code is 
followed by two bytes, the first containing 
the field width (w) and the second contain
ing the number of fractional digits (d). 

E and D FORMAT codes are represented by 
the hexadecimal values OC and OE, respec
tively. This value is always followed by 
two bytes which represent the field width 
and the number of fractional digits, 
respectively. 

A FORMAT Code 

The A FORMAT code is represented by the 
hexadecimal value 14. This representation 
is always followed by the l-byte value of' 
w, the number of characters of data. 

Literal Data 

The H FORMAT code and the quotation 
marks used to enclose literal data are both 
represented by the hexadecimal value lA. 
This code is followed by the character 
count (w in the case of the H specifica-



tion, the number of characters enclosed in 
quotation marks in the case of the use of 
quotation marks). The literal data follows 
the character count. 

The specification wX results in the 
production of the hexadecimal code 18 for 
the Xi this is followed by the 1-byte value 
of w. 

The T FORMAT code is represented by the 
value 12. The print position, w, is repre
sented by a 1-byte binary value. 

The P scale factor in the source module 
FORMAT statement is represented by the 
hexadecimal value 08. This code is fol
lowed by the value of the scale factor, if 
it was positive. If the scale factor was 
negative, 128 1 1S added to it before it is 
stored following the P representation. 

G F'OHMA1' code 

The G FORMAT Code is represented by the 
hexadecimal value 20. This value is always 
followed by two bytes which represent the 
field width and the number of significant 
diqits, respectively. 

L FORMAT Code 

The L FORMAT code is represented by the 
hexadecimal value 16. This value is fol
lowed by the 1-byte field width. 

Z FORMAT Code 

The Z FORMAT code is represented by the 
hexadecimal value 24. This value is fol
lowed by the 1-byte field width. 

DEBUG FACILITY 

The followinq paraqraphs describe the 
code produced for the FORTRAN Debug Facili
ty statements. The generated instructions 
set up parameters and branch into the 
DEBUG# transfer table. The object-time 
routines which support the Debug Facility 
are described in Appendix E. 

DEBUG STATEMENT 

When the source module includes a DEBUG 
statement, debug calls are generated before 
and after each sequence of calls to IBCOM 
for source module input/output statements. 
Additional debug calls are generated to 
satisfy the options listed in the DEBUG 
statement. 

Beginning of Input/Output 

The following code appears before the 
first call to IBCOM for an input or output 
operation: 

L 
CNOP 
BAL 

15,=V(DEBUG#) 
0,4 
14,44(0,15) 

End of Input/Outp~~ 

The following code appears 
last call to IBCOM for an input 
operation: 

L 
CNOP 
BAL 

15,=V(DEBUG#) 
0,4 
14,48(0,15) 

UNIT Option 

after the 
or output 

When the DEBUG statement does not 
include the UNIT option, the object-time 
debug routine automatically writes debug 
output on SYSOUT. When UNIT is specified, 
the following code is generated at the 
beginning of the object module: 

L 
CNOP 
BAL 
DC 

15,=V(DEBUG#) 
0,4 
14,12(0,15) 
F'DSRN' 

Appendix D: Object Code Produced by the compiler 181 



where DSRN is the data set reference number 
to be used for all subsequent debug output. 

TRACE Option 

When the TRACE option is specified in 
the source module DEBUG statement, the 
TRACE call is inserted immediately before 
the code for every labeled statement. The 
code is: 

L 
CNOP 
BAL 
DC 

15,=V(DEBUG#) 
0,4 
14,0(0,15) 
F'LABEL' 

where LABEL is the label of the following 
statement. 

SUBTRACE Option 

When the SUBTRACE option is listed in 
the source DEBUG statement., two sequences 
of code are produced: one at the entry to 
the object module, and one prior to each 
RETURN. 

SUBTRACE ENTRY: The debug call is made at 
the beginn1ng-of the object module. The 
call is: 

L 
CNOP 
BAL 

15,=V(DEBUG#) 
0,4 
14,4(0,15) 

At the time of the· call, register 13 
contains the address of the SAVE AHEA, the 
fifth word of which contains the address of 
the subprogram identification. Bytes 6 
through 11 of the subprogram identification 
are the subprogram name. 

SUBTgAC~~~QRN: The debug call is made 
immediately before the RETURN statement. 
The call is: 

L 
CNOP 
BAL 

15,=V(DEBUG#) 
0,4 
14,8(0,15) 

When the INIT option is given in the 
source module DEBUG statement, a debug call 
is produced for every assignment to a 
variable, or to a listed variable if a list 
is provided. The call immediately follows 
each assignment, including those which 
occur as a result of a READ statement or a 

182 

subprogram call. Three calls may occur, 
depending on the type of variable (scalar 
or array) and the method of assignment. 

INIT SCALAR VARIABLE: The following code 
is produced after each assignment of value 
to a scalar variable covered by the INIT 
option: 

L 
CNOP 
BAL 
DC 
DC 

15,=V(DEBUG#) 
0,4 
14,16(0,15) 
CL6' NAME' , CL2 ' 
XL1'L',XLO.4'T',XLO.4'X',XLO.4'B', 

XLi. 4' 0' 

where: 

NAME is the name of the variable which 
was set. 

L is the length of the variable in 
bytes. 

T is the type code for ~he variable: 

2 for a logical i-byte item 
= 3 for a logical fullword item 
= 4 for a halfword inteqer item 
= 5 for a full word integer item 

6 for a double-precision real item 
7 for a single-precision real item 
8 for a double-precision complex 
item 

= 9 for a single-precision complex 
item 

= A for a literal item (not currently 
compiler generated) 

X, B, and D are, respectively, the 
index, base, and displacement which loc
a te the item. 

INIT ARRAY ITEM: The following code is 
produced after each assignment of value to 
an array element: 

L 
CNOP 
BAL 
DC 
OC 

DC 

where: 

15, =V (OEBUG#) 
0,4 
14,20(0,15) 
CL6' NAME' , CL2' 
XL1'L',XLO.4'T',XLO.4'X',XLO.4'B', 

XLi. 4'0' 
XL1'TAG',AL3(ADDRESS) 

ADORESS IS THE LOCATION OF THE FIRST 
array element if TAG = 0, or ADDRESS is a 
pointer to the location of the first 
array element if TAG ~ 0. 

NAME, L, T, X, B, and D are as described 
for a scalar variable. 

!NIT FULL ARRAY: The following code is 
produced when a full array is set by means 
of an input statement specifying the arr~y 



name or when the array name appears as an 
argument to a subprogram: 

L 
CNOP 
BAL 
DC 
DC 
DC 
DC 

where: 

15,=VCDEBUG#) 
0,4 
14,24CO,15) 
CL6'NAME',CL2' 
A(ADDRESS) 
XL1'L',XLO.4'T',XL2.4'OOOOO' 
ACELEMENTS) 

ADDRESS is the location of the first 
array element. 

ELEME~~S is a pointer to a word contain
ing the number of elements in the array. 

NAME, L, and T are as described for a 
scalar variable. 

A debug call is produced for each 
reference to an array element when the 
SUBCHK option appears without a list of 
array names; when the list is given, only 
references to the listed arrays produce 
~phug calls. The debug call appears before 
the reference to the array, and is: 

L 
CNOP 
BAL 
DC 
DC 
DC 

where: 

15,=VCDEBUG#) 
0,4 
14,28(0,15) 
CL6' NAME', eL2' 
XL1'TAG',AL3CADDRESS) 
AL4(ELEMENTS) 

NAME is the array name. 

ADDRESS is the location of the first 
array element if TAG = 0, or ADDRESS is 
a pointer to the location of the first 
array element if TAG * 0. 

ELEMENTS is a pointer to a word contain
ing the number of elements in the array. 

AT STATEMENT 

The AT statement specifies the label, L, 
of a statement whose operation should be 

immediately preceded by the operation of 
the statements following the AT. As a 
result of the AT statement, an uncondi
tional branch to the location of the first 
statement following +e AT is inserted 
before the first instruction generated for 
the statement labeled L. This branch pre
cedes any TRACE or SUBTP~CE calls which may 
be written for statement L. 

The branch, like all branches performed 
in the Object module, consists of a load 
from the branch table, followed by a BCR 
instruction. The branch table entry 
referreo to is one constructed for a label 
which the compiler provides for the stat.p· 
[Uent fullowing the AT. 

TRACE ON STATEMENT 

The debug call produced for the TRACE ON 
statement appears at the location of the 
TRACE ON statement itself; the call is: 

L 
CNOP 
BAL 

15,~VCDEBUG#) 
0,4 
14,32CO,15) 

TRACE OFF STATEMENT 

The debug call produced for the TRACE 
OFF statement appears at the location of 
the TRACE OFF statement itself; the call 
is: 

L 15,=VCDEBUG#) 
CNOP 
BAL 

0,4 
14,36 (0, 15) 

DISPLAY STATEMENT 

The code for the DISPLAY statement is: 

L 
CNOP 
BAL 
DC 
DC 

15,=VCDEBUG#) 
0,4 
14,40 (0, 15) 
ACNAMELIST) 
A (FWRNL#) 

where NAMELIST is the address of the NAME
LIST table generated from the DISPLAY list 
by the compiler. This code appears at the 
location of the DISPLAY statement itself. 

Appendix D: Object Code Produced by the Compiler 183 



The information provided in this appen
dix '~as its primary use in connection with 
a listing of the compiler. The label lists 
indicate the chart on which a specific 
label can be found, or, for routines which 
are not flowcharted, they provide a 
description of the routine. 

PARSE LABEL LIST 

The labels enumerated in the following 
list are used in the flowcharts provided 
for the illustration of the major routines 
used in Parse. 

Label 
G0630 
G0631 
G0837 
G0632 
G0635 
G0636 
G0633 
G0642 
G0844 

Chart 
ID 
~ 
04 
BA 
BB 
BC 
BD 
BE 
BF 
BG 

Routine Name 
START-COMPILE~ 
STATEMENT PROCESS 
PRINT AND READ SOURCE 
STA INIT 
LBL FIELD XLATE 
STA XLATE 
STA FINAL 
ACTIVE END STA XLATE 
PROCESS POLISH 

SUPPLEMENTARY PARSE LABEL LIST 

The routines described in this section 
are listed by G number labels which are 
presented in ascending order. These rou
tines are those used in the operation of 
Parse which are not shown in the section of 
flowcharts for the phase. 

Routine 
Label ~~_ 
(;0287 REASSIGN 

MEMORY 

G063? ASSIGNMENT 
STA XLATE 

G0638 ARITH FUN 
DEF STA 
X LATE 

comments 
Obtains additional core 

storage, if possible, 
for a specific roll by 
pushing up the rolls 
that precede the re
questing roll in the 
block of storage. If 
this is not possible, 
it requests more core 
storage and, if none is 
available, enters PRESS 
MEMORY. 

Constructs the Polish 
notation for an assign-
ment statement. 

Constructs the Polish 
notation for an arith-
metic function defini-
tion statement. 

APPENDIX E: MISCELLANEOUS REFERENCE DATA 

Routine 
Label !!am~ __ 
G0639 ASSIGNMENT 

VAR CHECK 

G0640 LITERAL 
TEST 

G0641 END STA 
XLATE 

G0643 DO STA 
XLATE 

G0644 DO STA 
CONTROL 
XLATE 

G0645 DIMENSION 
STA XLATE 

G0646 GOTO STA 
XLATE 

G0641 CGOTO STA 

G0648 ASSIGNED 
GOTO STA 
XLATE 

G0649 ASSIGN STA 
XLATE 

c°IIl!!!~!!t§. 
Checks the mode of as-

signment variable and 
the expression for con
flict in ~ype speci
fication. 

Determines the statement 
type ann trnnsf~rs to 
the indicated statement 
processing routine. 

Determines the nature of 
the statement and 
transfers to the appro
priate translation rou
tine for non-END; 
translates END. 

Constructs the Polish 
notation for the DO 
statement. Locates the 
innermost DO statement 
in a nest of DO's, and 
spts up extended ran~e 
checking. 

Interprets the loop 
control specification 
in the DO statement and 
constructs the Polish 
notation for these 
controls. 

Determines the validity 
of the specifications 
in the DIMENSION state
ment and constructs 
roll entries. 

Determines the type of 
GO TO statement, and 
constructs the Polish 
notation for a GO TO 
statement. 

Constructs the Poli~h 

notation for a Computed 
GO TO statement. 

Constructs the Polish 
notation for an As-
signed GO TO statement. 

Controls the construc-
tions of the Polish 
notation for an ASSIGN 
statement. 

Appendix E! Miscellaneous Reference Data 185 



Routine 
Label !i9.!!!~ __ _ 
GOb~O IF STA 

XLATF. 

GOb51 LOGIC~L IF 
STA XLATE 

. G0652 IiV!PLICIT 
STA XLATE 

G06 5 3 REGIS'I'ER 
:{P._NGF 

GOb54 REGISTER. 
It-'JPLICIT 
CHAR 

G0655 SCA;'-J FOR 
TYPE QT 
AND SIZF 

G06S6 CmJTIl'JU~ 

STA XLATE 

G0657 CALL STA 
XLATE 

G0658 EXTERNAL 
S'rp.. XLATE 

G0659 FORMAT STA 
XLATE 

G0660 FORMAT STA 
END 

G0661 FORMAT 
LIST SCAN 

<::0662 FORMAT 
BASIC SCAN 

G0663 ISCAN TEST 

186 

£Q~!!!~!:!!:.2 
Constructs the 

notation for 
s ta temC'!1t .• 

Constructs the 
notation for a 
IF statement. 

Polish 
an IF 

Polish 
logical 

Checks the IMPLICIT 
statement ani controls 
the constrnction of the 
roll entries for the 
statement. 

Control~ character en
tries for an IMPLICIT 
statement. 

Places the characters in 
the H~PLICIT statement 
on the IMPLICIT roll. 

Determines the mo1e and 
size of the variables 
in specification state
rnents. 

Constructs the Polish 
notation for a continue 
statement. 

Constructs the 
notation for a 
statement. 

Polish 
CALL 

Validates the use of the 
EXTERNAL statement and 
constructs roll en
tries. 

Validates the use of the 
FOR~A'I statement and 
controls the construc
tion of the Polish 
notation for the state
ment. 

Builds the FORMAT roll 
from the information 
obtained from the proc
essing of the state
ment. 

Checks the form of the 
literal content of the 
FOH~AT statement. 

Interprets the FORMAT 
list and constructs the 
Polish notation for the 
list. 

Checks the size of the 
inteter constant or 
variable specified. 

Routine 
Label ~ame___ Comments 
G0664 P~CK H CODE Interprets the specifica

tion for the H format 
code. 

G066S PACK FOtU"AT Controls the registering 
QUOTE of the contents of a 

literal quote specified 
in a FOrt~AT statement • 

G0666 REWIND STA 
XLATF 

G0667 BACKSPACE 
STA XLATE 

G0668 END FILE 
STA XLATE 

G0669 END FILE 
END 

G0670 BLOCK DATA 
STA XLA'I'E 

G06?1 STOP ST~. 

XLATE 

G06?2 STOP CODE 
ENTRY 

G06?3 PAUSE STA 
XLATE 

G0674 PAUSE STOP 
COMMON 

G067S PAUSE STOP 
END 

G06?6 INIT 
LITERAL 
FOR STOP 
PAUSE 

G067? NAMELIST 
STA XLATE 

G0618 COMMON STA 
XLATE 

Constructs the 
notation for a 
statement. 

Polish 
REWIND 

Constructs the Polish 
notation for a 
BACKSPACF statement. 

Constructs the 
notation for 
FILE statement. 

Completes the 
notation for 
output control 
ments. 

Polish 
an Ei'-lD 

Polish 
input/ 
state-

Validates the use of the 
BLOCK DATA statement. 

Sets up the Polish nota
tion for the STO~ 
statement. 

Sets up the Polish nota
tion for the STOP 
statement. 

Controls the interpreta
tion of the PAUSE 
statement. 

Checks the form of the 
specified statement and 
controls the construc
tion of the Polish 
notation for the 
statement. 

Registers the constructed 
Polish notation on the 
POLISH roll. 

Controls the interpreta
tion of the message 
specified in the PAuse 
statement. 

Constructs the roll 
entries for the 
N~ELIST statement. 

constructs the roll 
entries for the CDr1MON 
specification. 



Routine 
Label Name 
G0679 TEST 10 

ARRAY OR 
SCALAR 

G0680 DOUBLE PRE 
STA XLATE 

G068l TYPE STA 
XLATE 

G0682 SCAN FOR 
SIZE 

G0683 TYPE 
SEARCH TEST 
AND REG 

G0684 ENTRY STA 
XLATE 

G0685 FUNCTION 
STA XLATE 

G0686 TYPED 
FUNCTION 
STA XLATE 

G0687 FUNCTION 
ENTRY STA 
XLATE 
XLATE 

G0688 SUBROUTINE 
STA XLATE 

G0689 SUBROUTINE 
ENTRY STA 
XLATE 

G0690 SUBPROGRAM 
END 

G0691 SPROG NAME 
SCAN AND 
REG 

Comments 
Validates the identifica

tion of the array or 
scalar used in COMMON. 

Checks the use of the 
DOUBLE PRECISION state
ment and controls the 
interpretation of the 
statement. 

Interprets and constructs 
the roll entries for 
the type specification 
statement. 

Checks the size specifi
cation for the vari
ables in type state
ments. 

Checks the identification 
of the variables in the 
type specification 
in statement for pre
vious definition and 
defines if correct. 

Constructs 
notation 

the 
and 

entries for an 
statement. 

Polish 
roll 

ENTRY 

These routines control 
the construction of the 
Polish notation for a 
FUNCTION subprogram by 
invoking the routines 
which interpret the 
contents of the state
ment. 

These routines control 
the construction of the 
Polish notation for a 
SUBROUTINE subprogram 
by invoking the routine 
which interprets the 
contents of the state
ment. 

Common 
for 
and 

closing routine 
ENTRY, FUNCTION, 

SUBROUTINE state-
ments. 

Checks the identification 
of the SUBROUTINE or 
FUNCTION subprogram for 
conflicts in defini
tion. 

Routine 
Label Name Comments 
G0692 TEST ORDER Checks the order in which 

the SUBROUTIN~ or FUNC
TION statement appears 
in the source module. 

G0693 DMY SEQ 
SCAN 

G0694 GLOBAL DMY 
SCAN AND 
TEST 

G0695 DEFINE 
FILE STA 
XLATE 

G0696 DATA STA 
XLATE 

G0697 DATA CaNST 
XLATE 

G0698 INIT DATA 
VAR GROUP 

G0699 DATA CaNST 
ANALYSIS 

G0700 DATA VAR 
TEST AND 
SIZE 

G070l MOVE TO 
TEMP 
POLISH ROLL 

G0702 READ STA 
XLATE 

G0704 READ WRITE 
STA XLATE 

G0705 END QT 
XLATE 

Checks the designation of 
the dummy variables for 
call by name or call by 
value. 

Checks the identification 
of the global dummy for 
a possible conflict in 
definition. 

Constructs the Polish 
notation for the DEFINE 
FILE statement. 

Constructs t.he Polish 
roll 
DATA 

notation and 
entries for the 
statement. 

Interprets the constants 
specified in the DATA 
statement. 

Determines and 
the number of 
specified in 
statement. 

Validates the 
tion of the 
used in 
statement. 

sets up 
elements 
the DATA 

specifica
constants 

the DATA 

Checks the definition of 
the variables specified 
in the DATA statement 
for usage conflict, and 
registers the variables 
if no conflict is 
found. 

Moves information for 
DATA statement to TEMP 
POLISH roll from WORK 
roll. 

Checks the type of READ 
statement and controls 
the interpretation of 
the sta tement. 

Interprets 
of the 

the elements 
READ or WRITE 

statement 
structs 
notation 
statement. 

Constructs 
notation 
quote. 

and con-
the Polish 
for the 

the Polish 
for the END= 

Appendix E: Miscellaneous Reference Data 187 



Routine 
Label Name 
G0706 ERR QT 

XLATE 

G0707 REGISTER 
IBCOM 

G0708 REGISTER 
ERROR LINK 

G0709 READ B STA 
XLATE 

G0710 PUNCH STA 
XLATE 

G0711 PRINT STA 
XLATE 

(;0712 1-'2 10 
XLATE 

G0713 IOL LIST 
Xl..ATE 

G0714 FIND STA 
XLATE 

G0715 RETURN STA 
XLATE 

comments 
Constructs the ~~ljsh 
nGt~tion for the ~R~= 

quote in the REAu 
statempnt. 

Inserts a roll entry for 
a c;all '.0 IBCOM. 

Sets the roll entry for 
the 'Jent:l:ac..:. ... 'il of error 
1 inkage. 

Initialize for tte con
struction of the ~olish 
notatin~ Lor the in
dicated statement. 

Crln'S··rut:i".s the Polish 
n( .. t~tiOI\ foI. the in
dicated input/output 
s':atemf>nt and int.er
p:.. ·~t ') FOF,~AT d~signa

tions ass~ciated with 
the input/out.put state
ment. 

Interprets and constrDcts 
t~~ Polish ~~1~tion for 
the 11~t associated 
with tte indicated 
input/output statement. 

Constructs the Polish 
notation for the FIND 
statement. 

constructs the Polish 
notation tor the RETURN 
statemeHt. 

G0716 EQUIVALENCE Constructs the roll en
EQUIVA-STA XLATE tries for the 

LEt-ICE statement 

G0717 DIMENSION 
SEQ 
XLATE 

G0718 TEMP MAKER 

G0719 SPECIFI
CATION 
STA EXIT 

G0120 JUMP END 
G0721 ACTIVE END 
G0722 BEAD STA 

EXIT 

188 

Constructs tte roll en
tries for the Jiruen
sions designated !~r an 
array. 

Increments 
temporar.y 
uS€ii fol. 
sions. 

pointer for 
locations 

dwruny dimen-

Set flags and return. 

Routine 
Label Name 
G0723 STA XLATE 

EXIT 

G0724 ILLEGAL 
STA FAIL 

G0725 ORDER FAIL 
G0726 ALLOCATION 

FAIL 
G0727 ILLEGAL 

NUMBER 
FAIL 

G0728 SUBSCRIPT 
FAIL 

G0129 10 CONFLICT 
FAIL 

G0730 TYPE 
CONFLICT 
FAIL 

G0731 VAR SCAN 

G0732 ARRAY SCAN 

G0733 SUBSCRIPT 
ANALYSIS 

G0734 SCRIPT ITEM 
ANALYSIS 

Comments 
Replaces the Polish nota

tion for a statement 
with error linkage if 
indicated. 

These routines set up 
diagnostic messages for 
the type of e'rror indi
cated by the routine 
name. 

CheCKS 'definition of 
variables, in the source 
module; defines as 
scalar if 'undefined. 

Constructs 
notation 
entries for 
ferences. 

the Polish 
and roll 
array re-

Determines the nature of 
an array reference for 
purposes of subscript 
optimization. 

Determines whether a 
subscript expression is 
a linear function of a 
DO variable, and sets 
ANSWER BOX. 

G0135 NOTE LINEAR Registers a linear sub-
SCRIPT script expression on 

SCRIPT roll. 

G0736 RESTORE 
NONLINEAR 
SCRIPT 

G013? MOVE ON 
EXIT FALSE 

G0738 SCRIPT 
SCAlAR 
ANALYSIS 

Builds the Polish nota
tion for a nonlinear 
subscript expression on' 
Polish roll. 

Moves one group from WORK 
roll to POLISH roll, 
sets ANSWER BOX to 
false, and returns. 

Determines whether a 
scalar used in a sub
script is a DO variable 
and sets ANSWER BOX. 



Routine 
Label Name 
G0739 SCRIPT 

CONST 
ANALYSIS 

G0740 DEFINE 
SCRIPT 
GROUP 

G0741 REGISTER 
SCRIPT 
GROUP 

G0744 TERM SCAN 

G0745 ELEMENT OP 
SEQ SCAN 

G0146 UNAPPENDED 
SPROG ARG 

G0141 FUNCTION 
ELEMENT 

G0748 CONST 
ELEMENI' 

G0749 SCALAR 
ELEMENT 

GO 750 ELEMENT 
MOVE 

G0751 OP SCAN 
CHECK 
DEPOSIT 

Comments 
Separates constant used 

in a subscript expres
sion as either induc
tion variable coeffi
cient or additive 
constant. 

Creates new group con-
taining zeros on 
SCRIPT roll. 

the 

Defines a 
pression 
roll oy 
traits, 
and array 

subscript ex-
on the SCRIPT 
set.ting t:.Ile 

displacement, 
reference. 

Initializes the construc
tion of Polish notation 
for a new term in an 
expression. 

Constructs the Polish 
notation for a term in 
an arithmetic ex
pression. 

Exits from expression 
scanning on finding an 
array or subprogram 
name not followed by a 
left parenthesis; en
sures reference is 
correct. 

whether Determines 
function call in 
expression is to 

a 
an 

a 
statement 
I i·brary 
global 
calls 

function, a 
function, or a 

subprogram; 
SPROG ARG SEQ 

SCAN to scan arguments. 

Scanning expression, if 
compiler finds non
letter, non-left paren
thesis, it goes here; 
determines if really a 
constant. 

Ensures that scalar is 
registered. 

Moves pointer to POLISH 
roll for any element in 
expression. 

Determines the operation 
indicated in an expres
sion, sets up the 
appropriate driver, and 
falls through to OP 
CHECK AND DEPOSIT. 

Routine 
Label Name 
G0752 OP CHECK 

AND DEPOSIT 

Comments 
The current and previous 

operations are 
according to 
dence, and a 
notation is 
structed. 

set up 
a prece

Polish 
con-

G0753 GEN AND REG Determines the nature of 
EXPON SPROG an exponentiation, and 

records the required 
subprogram on the 
GLOBAL SPROG roll. 

G0754 REG COMPLEX Determines the nature of 
SPROG an operation involving 

complex variables· and 
registers the appropri
ate routine on the 
GLOBAL SPROG roll. 

G0755 A MODE PICK Checks and sets mode of 
AND CHECK operator by inspecting 

the first of a pair of 
operands. 

G0756 MODE PICK Actually places mode 
field in driver. 

G0757 B MODE PICK With second operand and 
AND CHECK driver set by A MODE 

PICK AND CHECK, resets 
driver mode; if complex 
raised to a power, 
ensures power is 
integer. 

G0758 MODE CHECK Determines whether modes 
of operands are valid 
in relational and log
ical opprations" 

G0759 NUMERIC EXP Determines that an opera-
CHECK tion or an expression 

is numeric, as opposed 
to logical, for 
compatibility. 

G0760 NUMERIC EXP Uses NUMERIC EXP CHECK, 
bottom of CHECK AND then prunes 

PRUNE POLISH roll. 

G0761 SPROG ARG 
SEQ SCAN 

G0762 ARG TEST 
AND PRUNE 

G0763 TEST FOR 
ALTERABLE 

Constructs the Polish 
notation for the argu
ment list designated 
for a subprogram. 

Tests the number and type 
of arguments to library 
routine; moves label 
arguments to CALL LBL 
roll. 

Determines whether a 
scalar has been passed 
as a subprogram 
argument. 

Appendix E: Miscellaneous Reference Data 189 



Routine 
Label Name 
G0164 IOSCAN 

NO USE 

G0165 10 CLASSIFY 
NO USE 

G0166 10 SCAN 

Conunents 
s;tS---a- flag tested in 

MOOE SET so that low
order bits of roll are 
not altered when vari
able is defined; state
ment does not use 
variable. 

Goes to 10 CLASSIFY after 
setting flag to indi
cate variable has not 
been used and mode 
should not he set. 

Compiles name from source 
in central area and 
goes to In CLASSIFY. 

G0161 10 CLASSIFY Determines the classifi
cation of a name 
scalar, array, subpro
gram, etc., and leaves 
pointer in WO; exits 
false if name not 
defined. 

G0168 REGISTER 
SCALAR 

G0169 REGISTER 
GLOBAL 
SPRaG 
REGISTER 
RUNTIME GS 

G0110 REGISTER 
GLOBAL 
SPRaG ROLL 

G0111 MODE SET 

G0112 CaNST SCAN 

G0113 REGISTER 
COMPLEX 
CaNST 

G0114 REGISTER 
FL CaNST 

G0715 REGISTER 
WORK CONST 

190 

Records new name on 
SCAlAR roll. 

i.f name is 
a defined sub

if not re
on GLOBAL 

Determines 
already 
program; 
cords it 
SPRaG roll. 

Records name 
SPROG roll. 

on GLOBAL 

Determines the mode of 
the indicated variable, 
logical, integer, com
plex, etc., and inserts 
code in pointer in WOe 

Controls the translation 
and recording of 
constants. 

Records complex 
double-precision 
plex constants not 
viously defined 
appropriate roll. 

and 
com
pre

on 

Records single- and 
double-precision real 
constants on appropri
ate roll when not pre
viously defined. 

Records constant in WO as 
new integer constant if 
not defined. 

Routine 
Label N~ 
G0776 REGISTER 

FX CONST 

G0771 CONST 
ANALYSIS 

Comments 
Records new integer con

stant if not previosuly 
defined. 

Determines the type of a 
constant and jumps to 
proper conversion rou
tine. 

G0778 CPLX CONST Converts a complex 
ANALYSIS constant. 

G0719 CHECK CONST Checks for unary minus 
SIGN sign on constant. 

G0780 SCAN CONST 
SIGN 

Scans first character of 
a constant for a sign; 
sets up driver if unary 
minus. 

G0782 HEXADECIMAL Converts a hexadecimal 
CONST SCAN constant. 

G0783 REGISTER 
HEX CONST 

G0784 LBL ARG 
SCAN 

G0785 SCAN 
HOLLERITH 
ARGUMENT 

G0786 LITERAL 
CONST SCAN 

G0787 LITERAL 
CONST SCAN 
PAUSE 

G0788 REGISTER 
LITERAL 
CONST 

G0789 INIT PACK 
LITERAL 

G0790 PACK 
LITERAL 
COMPLETE 

G0791 PACK 
LITERAL 
CONST 

G0792 LOOK FOR 
ONE QUOTE 

Records new constant on 
HEX CONST roll if not 
previously defined. 

Checks validity of a 
label argument to a 
subprogram and records 
label as jump target. 

Scans an IBM card code 
argument to a sub
program, and records as 
literal constant. 

Distinguishes literal 
constants from logical; 
converts and records. 

Packs a literal constant. 

Records literal constant 
on LITERAL CONST roll 
if not previously de
fined. 

Initializes 
sion of 
constant. 

for conver
a literal 

Moves literal constant 
onto TEMP LITERAL roll 
if packed. 

Converts a 
stant 
input. 

literal con-
from source 

Checks for a quotation 
mark not followed by a 
second quotation mark; 
sets ANSWER BOX. 



Routine 
Label Name 
G0793 PACK TWO 

FROM WORK 
G0794 I;ACK r-.l.1'~ 

Vl'lJ:. 

FROM WORK 

G079S PACK CRRNT 
CHAR 

G0796 PACK CHAR 

Comments 
Packs low-order byte from 

last one or two groups 
on WORK roll onto 
LITERAL TEMP roll. 

Packs current character 
onto LITERAL TEMP roll. 

General routine to actu.
ally place a byte in a 
word which, when com
plete, is placed on the 
LITERAL TEMP roll. 

G0797 SYMBOL SCAN Assembles identifier from 
input in SYMBOL 1, 2, 
and 3, and returr.s. 

G0798 LOGICAL 
CaNST SCAN 

<;0799 JU1>1P LBL 
SCAN AND 
MOVE 

G0800 FORMAT LBL 
SCAN 

GOSOl FORMAT LBL 
Tr::ST 

G0802 LBL SCAN 

G0803 REGISTER 
LBL 

G0804 NEXT ZERO 
LEVEL COMMA. 
NEXT ZERO 
COMMA 
OR R PAR EN 

G080S NEXT ZERO 
COMMA 
OR CS 

Scans logical constants 
from source input and 
records as integers. 

Scans label, defines it 
as jump target and 
pointer on POLISH roll. 
Locates transfers from 
innermost DO loops that 
are possible extended 
range candidates. Also 
checks for possible 
re-entry points into 
innermost DO loops, and 
tags such points. 

Scans a label, registers 
it if necessary, and 
ensures that it is a 
FORMAT label if already 
defined. 

Tests that pointer 
indicates format 
(vs. jump 
label); if not, 
is an error. 

In WO 
label 

target 
there 

Scans referenced label, 
defines on LBL roll if 
req~ired, produces er
ror messages, leaves 
pointer in WO. 

Records label on LBL roll 
if not previously 
defined; leaves pointer 
in WO. 

Scans source input to 
next comma not in 
parentheses or to close 
off a pair of paren
theses. 

Scans source input until 
next comma or slash 
not in parentheses. 

Routine 
Label Nam~_ 
G0806 NEXT 

CLOSING 
SLASH 

G0807 NEXT ZERO 
COMMA SLASH 
OR CRP 

G0808 NEXT ZERO 
R PAREN 

G0809 COMMA TEST 

G0810 INTEGER 
TERM 
SCAN AND 
MOVE 

G0811 INTEGER 
CONST SCAN 
AND MOVE 

Comments 
Scans source input until 

second of the next pair 
of slashes not enclosed 
in parentheses. 

Scans source input until 
next comma or slash not 
enclosed in parentheses 
or a closing right 
parenthesis. 

Scans source input until 
next zero level right 
parenthesis. 

Advances scan arrm<l and 
returns ANSWER BOX true 
if next active charac
ter is a comma; if it 
is a letter, sets up 
missing comma message, 
does not advance, and 
returns true; if it is 
neither, returns false. 

Scans integer constant or 
variable, defines on 
appropriate roll, puts 
pointer on POLISH roll. 

Scans integer constant; 
defines on FX CONST 
roll if required; puts 
pOinter on POLISH roll. 

G0812 INTEGER VAR Scans integer variable; 
SCAN AND defines on roll if re-
MOVE quired; puts pointer on 

POLl SH roll. 

G0813 INTEGER 
TEST 

G0814 SIGNED 
INTEGER 
SCAN 

G081S INTEGER 
SCAN 

G0816 DP CONST 
t<1AKER 

G0817 DP ADJUST 
CONST 

Determines whether a 
pointed to variable or 
constant is an integer. 

Scans and converts signed 
integer constant; de
fines on FX CONST roll 
if required. 

Scans and converts an 
unsigned integer con
stant and register on 
FX CONST roll if 
required. 

Builds a double-precision 
constant from source 
input. 

Used in converting float
ing point numbers; 
adjusts for E or D 
field. 

Appendix E: Miscellaneous Reference Data 191 



Routine 
Label Name 
G0818 CONVERT TO 

FLO~T 

G0820 CLEAR TWO 
AND EXIT 
TRUE 

G0821 CLEAR ONE 
AND EXIT 
TRUE 

G0823 EXIT TRUE 
EXIT TRUE 
ML 

G0824 CLEAR ONE 
AND EXIT 
FALSE 

G0825 EXIT FALSE 

G0826 CLEAR TWO 
AND EXIT 

G082? CLEAR ONE 
AND EXIT 

Comments 
Converts integer constant 

to floating point. 

Remove the specified num
ber of groups from the 
WORK roll, set ANSWER 
BOX to true, and re
turn. 

Sets ANSWER BOX to true 
and returns. 

Removes one 
WORK roll, 
BOX to 
returns. 

group from 
sets ANSWER 

tI ue, and 

Sets ANSWER BOX to false 
and I-eturns. 

Remove specified number 
of groups from WORK 
roll and return. 

G0829 EXIT Returns. 
EXIT ML 
EXIT ON ROLL 

G0832 SYNTAX FAIL Records syntax error mes-
ML sage and goes to FAIL. 
ILLEGAL 
SYNTAX FAIL 
SYNTAX FAIL 

G0833 FAIL 

G0834 STATUS 
CONTROL 

G0835 DIGIT CONV 
SCAN 

G0836 CONV ONE 
DIGIT 

G0838 PRINT A 
CARD 

192 

If JPE flag off, restores 
WORK and EXIT roll 
addresses from last 
status control, house
keeps Polish notation 
through STA XLATE EXIT, 
and returns with ANSWER 
BOX set to false; if 
the flag is on, values 
are restored for JPE 
and exit is to the 
location following last 
JPE POP instruction. 

Saves addresses of WORK 
and EXIT roll bottoms. 

Converts integer from 
decimal to binary, and 
leaves in DATA area. 

Converts decimal digit to 
binary, and leaves in 
DATA area. 

Controls printing of 
source listing and 
error messages. 

Routine 
Label Name 
G0839 TESTFOR 

ERROR 
MESSAGE 

G0840 PRINT 
MESSAGES 

G0841 TEST AND 
ZERO PRIl~T 

BUFFER 

G0842 INIT READ 
A CARD 

G084) READ A 
CARD 

G0845 SKIP TO 
NEXT CHAR 
MASK 

Co!!!!!!~ 
Determines whether error 

messages are to be 
printed; if so, prints 
dollar sign markers. 

Prints line of error 
messages. 

Clears output area for 
printer. 

Scans source input for 
assignment statement 
(flag 1) or Logical IF 
with assignment for 
consequence (flag 2). 

Puts card onto SOURCE 
roll and re-enters IN1T 
READ A CAkD at proppr 
point. 

Scans input to next 
sourc~ character not of 
a class 6f characters 
specified as input to 
routine. 

G0846 REENTRY Entry point used to con-
SKIP TO NEXT tinue masking operation 
CHAR MASK on a new card. 

G084? NEXT CHAR 
NEXT 
CHAKACTER 

G0848 NEXT CHAR 
ML 

Advance scan arrow to 
next active character. 

NEXT CHARACTER 
r-~L 

G0849 BCD TO 
EBCDIC 

G0850 DIGIT CONV 
INITIAL 

G0851 ~.APTl TO 
TMPl 

Converts CRRNT 2HAR from 
BCD to EBCDIC. 

Initializes for the con
version of a number 
from decimal to binary 
(resets digit counts, 
clears DATA area, etc.) 

Converts value in format 
of TOP or BOTTOM, a 
virtual address, to a 
true address. 

G1034 BUILD LOOP Constructs group on LOOP 

G1035 

G103? 

DATA GROUP DATA roll. 

DATA TERM 
ANALYSIS 

CONST 
REGISTER 
EXIT 

Checks for and sets flag 
if it finds unary minus 
in DATA statement. 

Common exit routine for 
constant recording rou
tines; leaves pointer 
to constant in WOo 



Routine 
Label Name 
G1038 T AND F 

COt~ST SCAN 

Conunents 
Scans for logical con

stants T and F in DATA 
statements. 

G1039 EXIT ANSWER General routine used by 
all EXITs which set 
ANSWER BOX to store 
value in ANSWER BOX and 

G1040 DEBUG STA 
XLATE 

G1041 AT STA 
X LATE 

G1042 TRACE STA 
XLATE 

G1043 DISPLAY STA 
XLATE 

G1044 IEYSKP 
SKIP TO 
NEXT 
PROGRAM 

G1070 PRESS 
MEMORY 

return. 

Translates DEBUG state-
mente 

Constructs AT roll entry 
from AT statement. 

Constructs Polish nota-
tion for TRACE state-
ment. 

Constructs Polish nota
tion and roll entries 
for DISPLAY statement. 

Calls IEYFORT to skip to 
end of present source 
module when roll stor
age is exhausted. 

Called by REASSIGN MEMORY 
to obtain additional 
core storage from roll 
space that is no longer 
in use. If it obtains 
32 or more bytes, exit 
is back to REASSIGN 
MEMORY. Otherwise, 
exit is to IEYNOCR in 
IEYFORT to print NO 
~ORE AVAILABI,E meggage. 

The labels enumerated in the following 
list are used in the flowcharts provided 
for the illustration of the major routines 
used by Allocate. 

Chart 
Label 10 
G0359 -os--
G0451 CA 

CA 

G0362 CB 

G0361 CC 
G0365 CD 

G0371 CE 
G0372 CF 

G0374 CG 

Routine Name 
START ALLOCATION 
ALPHA LBL AND L SPROGS 
ALPHA SCALAR ARRAY AND 
SPROG 
PREP EQUIV AND PRINT 
ERRORS 
BLOCK DATA PROG ALLOCATION 
PREP DMY DIM AND PRINT 
ERRORS 
PROCESS DO LOOPS 
PROCESS LBL AND LOCAL 
SPROGS 
BUILD PROGRAM ESD 

Chart 
Label -!~- Routine Name 
G0376 CH ENTRY NAME ALLOCATION 
GO)?? CI COMMON ,".LLOCATION 11.ND 

OUTPUT 
G0381 CK EQUIV ALLOCATION PRINT 

ERRORS 
G0437 CL BASE AND BRANCH TABLE 

ALLOC 
G0397 CM SCALAR ALLOCATE 
,...",.1'\1 " .. , ~nn'" " J\ T T rv-" 1\ ""v \;JV"tV.L \,,1'1 nn~.1. l""'\..LI.LIV'-n.J..L:J 

G0402 CO PASS 1 GLOBAL SPROG 
ALLOCATE 

G0442 CP SPROG AFG ALLOCATION 
G0443 CQ PREP NAMELIST 
G0444 CR LITERAL CONST ALLOCATION 
G0445 CS FORMAT ALLOCATION 
G0441 CT EQUIV MAP 
G0403 CU GLOBAL SPROG ALLOCATE 
G0405 CV BUILD NAMELIST TABLE 
G0438 CW BUILD ADDITIONAL BASES 
G0545 CX DEBUG ALLOCATE 

SUPPLEMENTARY ALLOCATE LABEL LIST 

The routines described in this section 
are listed by G number labels which are 
presented in ascending order. These rou
tines are thoge used in the operation of 
Allocate which are not shown in the section 
of flowcharts for the phase. 

Routine 
Label Name 
G0363 PREPROCESS 

EQUIV 

G0364 REGISTER 
ERRORS 
SYMBOL 

G0366 CHECK DMY 
DIMENSION 

G0367 GLOBAL DMY 
TEST 

G0368 DMY DIM 
TEST AND 
REG 

Comments 
Checks the data contained 

on the EQUIVALENCE roll 
and computes the 
required addresses. 

Checks the ERROR SYMBOL 
roll for the presence 
of the error just 
detected. All dupli
cate entries are pruned 
from the roll and all 
new entries placed on 
the roll. 

The dummy dimension is 
checked for definition 
as a global dummy vari
able, or in COMMON. 

pointer to the 
array on the 
roll; a pointer 

Sets a 
dummy 
ENTRY 
to the ARRAY roll 1S 
also set for each dummy 
array. 

The DMY DIMENSION roll is 
rebuilt with the infor
mation obtained from 
the COMMON DATA TEMP, 
TEMP, and GLOBAL DMY 
rolls. 

Appendix E: Miscellaneous Reference Data 193 



Routine 
Label Name 
G0369 DMY DIM 

TEST 

G0370 DMY 
CLASSIFY 

G0373 REGISTER 
BRANCH 
TABLE 

G0375 PUNCH 
REMAINING 
ESD BUFFER 
PUNCH 
REMAINING 
CARD 

G0378 SEARCH 
ROLL BY 
MAGNITUDE 

G0379 PRINT 
COMMON 
ERRORS 

G0380 PRINT 
COMMON 
HEADING 

G0382 EQUIV 
ALLOCATION 

G0383 FLP AND 
PROCESS 
EQUIV 

G0384 PROCESS 
EQUIV 

G0385 INTEGRATE 

194 

Comments 
The dimension data is 

checked for having been 
previously defined on 
the NAMELIST ITEMS and 
COMMON DATA rolls. 

Classifies a dummy, de-
fining it as scalar if 
undefined; if it is an 
array sets call by name 
tag. 

Places work containing 
zero on the BRANCH 
TABLE roll. 

Punches a card. 

The' GENERAL ALLOCATION 
roll is searched to 
check if the largest 
equivalenced area has 
been allocated. 

Sets up for, and prints, 
COMMON allocation er-
rors. 

COMMON storage map head-
ing is printed. 

Builds the EQUIV 
ALLOCATION roll from 
the boundary calcu
lated; records the 
absolute address as
signerl to the vari
ables. 

Inverts the contents of 
the EQUIVALENCE roll. 

Constructs complete 
EQUIVALENCE sets on the 
the GENERAL ALLOCATION 
roll using information 
on the EQUIVALENCE 
roll. 

Assigns locations rela
tive to the first vari
able listed for all 
variables in an EQUIVA
LENCE set if not al
ready allocated. 

Routine 
Label Name 
G0386 TEST FOR 

BOUNDARY 

G0387 CSECT EQUIV 
ALLOCATION 

G0388 PRINT CSECT 
EQUIV MAP 

G0389 BUILD 
COMMON 
ALL ROLL 

G0391 SEARCH FOR 
LARGE 
ARRAYS 

G0392 BUILD A 
NEW CSECT 

G0393 PRINT A 
ARRAY 
CSECT MAP 

G0394 CONV TEMP3 
TO HEX 

G0395 GLOBAL DMY 
ALLOCATE 

G0396 TEST FOR 
CALL BY 
NAME 

Comments 
Sets and checks the 

smallest equivalen~ed 
area and highest b0und
ary required for allo
cation of the variables 
indicated; resets pro
gram break according to 
requirement. 

Controls the' allocation 
of EQUIVALENCE seL; 
equal to or grPdter 
than 3K bytes into d 
new control section. 

Sets up and formats the 
printing of the storage 
map for EQUIVALENCE 
sets equal to or great
er than 3K bytes. 

Calculates the base anrl 
displacement for EUUIV
ALENCE sets equal to or 
greater than 3K bytes 
and registers these 
sets on the COMMON 
ALLOCATION roll. 

Determines the size of 
arrays not defined as 
EQUIVALENCE or COMMON. 
Obtains the arrays that 
are equal to or greater 
than 3K bytes. 

Sets the program name dnd 
obtains a new control 
section for the alloca
tion of arrays ann 
EQUIVALENCE sets. 

Sets the information for 
the printing of the ~-n 
for arrays equal to or 
greater than 3K bytes. 

Converts the contents of 
the temporary register 
to hexadecimal. 

Assigns storage for glob
al dummy variables; 
expands the contents of 
the BASE TABLE roll, as 
required. 

Determines whether the 
indicated variable was 
called by name or 
called by value. 



Routine 
Labe! Na~ 

G0398 ALLOCATE 
SCALAR 
BOUNDARY 

G0399 ALLOCATE 
SCALAR 

G0400 CED SEARCH 

G0404 ALLOCATE 
SPROG 

(;0406 ADJUST AND 
OUTPUT NAME 

G0407 PUNCH NAME 
LIST AND 
FIELD 

CO!!!IDents 

Sets up allocation of 
scalars according to 
the size of the 
variable. 

Formats the allocation of 
scalars not defined as 
global dununies in COM
MON or in EQUIVALENCE 
sets. Initializes for 
the printing of the 
scalar map and calcu
lates tne base and 
displacement. 

Determines if the vari
able is defined as a 
global dummy, in COMMON 
or in an EQUIVALENCE 
set. If it is, it sets 
the ANSWER BOX = true. 

Sets the type of the ESD 
cards that are to be 
punched and initializes 
for the allocation of 
subprogram addresses. 

Sets the format for the 
punching of the 
NAMELIST name, and 
adjusts for storage. 

Sets the format for the 
punching of the address 
allocated for each 
NAMELIST according to 
storage required. 

Gouoe OUTPUT MODE Sets the format for the 
WOlill 

(;0409 ADVANCE 
PROG BREAK 
AND PUNCH 

G0410 PUNCH 
LITERAL 

G0411 MOVE TO 
PUNCH BUFF 

G0412 PUNCH TXT 
CARD 

punching of the mode of 
the NAMELIST variable. 

Increases the item PRO
GRAM BREAK according to 
the storage allocation 
required for the 
variables indicated. 

Obtains the number of 
bytes and the address 
of the roll indicated 
for punching of literal 
constants. 

Moves the indicated data 
to the appropriate 
punch buffer. 

Punches the indicated 
TXT card after setting 
up the address and 
buffer information. 

Routine 
Label Name 
GOiiI3 PUNCH 

REMAINING 
TXT CARD 

G0414 PUNCH ESD 
G0415 PUNCH LD 

ESD 

Conunents 
Punches the remaining 

card indicated, after 
the area from which 
data was being taken 
has been punched. 

Punches the indicated ESD 
cards for the program 
area indicated. 

G0416 PRINT ERROR Prints the contents of 
LBL ROLL this roll which con

tains the errors noted 
during operation. 

G0417 CONVERT LBL Converts the label of an 
erroneous statement to 
BCD for printing. 

G0418 PRINT ERROR Prints the contents of 
SYMBOL the ERROR SYMBOL roll. 

G0420 PRINT 
SCALAR OR 
ARRAY MAP 

G0421 PRINT "INIT 
MAP 

G0422 TEST AND 
PRINT MAP 

G0423 PRINT MAP 
HEADING 

G0424 PRINT 
FORMAT MAP 

G0425 PRINT 
HEADING 
MESSAGE 

G0426 PRINT MAP 
PRINT MAP 
ML 

G0431 PRINT 
REMAINING 
BUFFER 

G0432 PRINT ERROR 
REMAINING 
BUFFER 

G0433 ALLOCATE 
FULL WORD 
MEMORY 

G0434 ALLOCATE 
MEMORY 

G0435 ALLOCATE 
BY TYPE 

Prints the indicated map. 

Checks the existence of 
processing of a storage 
map. Initiates the 
printing of the indi
cated map if one is not 
already being printed. 

Prints the heading of the 
indicated storage map 
for the variables 
designated. 

Prints map of FORMAT 
statements. 

Prints the 
dicated 
messages. 

heading in
for error 

Prints the variables as
sociated with the stor
age map heading from 
the rolls indicated. 

Print the remal.nl.ng in-
formation in the print 
buffer after the data 
has been obtained from 
the indicated storage 
area. 

Initializes for the 
allocation of a full 
word of storage. 

Allocate storage accord-
ing to the type of the 
variable indicated; 
fullword, halfword, or 
byte. 

Appendix E: Miscellaneous Reference Data 195 



Routine 
Label ~~me __ 
G0436 CALCULATE 

SIZE AND 
BOUNDARY 

G0419 CALCULATE 
BASE AND 
DISP 

G0440 REGISTER 
BASE 

G0446 BUILD 
FORMATS 

G0447 INCREMENT 
PNTR 

CO~~!!ts 
Determines the size and 

the boundary required 
for the variable indi
cated. 

Determines the base table 
entry and displacement 
for variable being 
allocated, constructing 
a new base table entry 
if necessary. 

Constructs a new BASE 
TABLE roll group. 

The base and displacement 
for FORMAT statements 
are calculated and the 
PROGRAM BREAK increased 
as required. 

Increases the address 
field of the pointer to 
the indicated roll so 
that the pointer points 
to the next group on 
the roll. 

G0448 ID CLASSIFY Variables are checked for 
a previous classifica
tion as a global dummy, 
a scalar, an array, 
global sprog, used 
library function, or a 
local sprog. 

G0449 REGISTER 
SCALAR 

G0450 MODE SET 

G0455 CLEAR THREE 
AND EXIT 
TRUE 

l~04 56 CLEAR TWO 
AND EXIT 
TRUE 

G04,)7 CLEAR ONE 
AND EXIT 
TRUE 

G0458 EXIT TRUE 
EXIT TRUE 
ML 

196 

Builds new group onto the 
SCALAR roll. 

Sets the mode of the 
variable to fixed or 
floating, explicit or 
implicit, or not used. 

Prunes three groups from 
the WORK roll, and 
exits with a true ans-
wer in ANSWER BOX. 

Prunes two groups from 
the WORK roll., and 
exits with a true 
answer in ANSWER BOX. 

Prunes one group from the 
WORK roll, and exits 
with a true answer in 
ANSWER BOX. 

Set ANSWER BOX to true 
and exit. 

Routine 
Label Na~ Comments 
G0460 CLEAR TWO Prunes two groups from 

AND EXIT the WORK roll, and 
FALSE exits with a false 

answer in ANSWER BOX. 

G0461 CLEAR ONE Prunes one group from the 
AND EXIT WORK roll, and exits 
FALSE with a false answer in 

ANSWER BOX. 

G0462 EXIT FALSE Sets ANSWER BOX to fdlse, 
and exits. 

G0464 CLEAR FOUR Prunes four groups from 
AND EXIT the WORK roll, and 

exits. 

G0465 CLEAR THREE Prunes three groups from 
AND EXIT the WORK roll, and 

exits. 

G0466 CLEAR TWO Prunes two groups from 
AND EXIT the WORK roll, and 

exits. 

G0467 CLEAR ONE Prunes one group from the 
AND EXIT WORK roll, and exits. 

G0468 EXIT Obtains return address 
from the EXIT roll, and 
transfers to that 
address. 

UNIFY LABEL LIST 

The labels enumerated in the following 
list are used in the flowcharts provided 
for the illustration of the major routines 
used by Unify. 

Chart 
Label ~ Routine Name 
GOll1 07 START UNIFY 

G0145 DA ARRAY REF ROLL ALLOTMENT 

GOl13 DB CONVERT TO ADR CONST 

GOl12 DC CONVERT TO INST FORMAT 

GOl15 DD DO NEST UNIFY 

SUPPLEMENTARY UNIFY LABEL LIST 

The routines described in this section 
are listed by G number labels which are 
presented in ascending order. These rou
tines are those used in the operation of 
Unify which are not shown in the section of 
flowcharts for the phase. 



Routine 
!.abe! Name 
GOl14 CALL GEN 

GOl16 NOTE ARRAY 
ALLOCATION 
DATA 

GOl17 LEVEL ONE 
UNIFY 

GOtt8 DO LOOP 
UNIFY 

GOl19 SWEEP 
SCRIPT 
EXP NOTE 

G0120 ZERO COEF 
UNIFY 

Comments 
Transfers to the Gen 

phase of the ~compiler. 

Processes SCRIPT roll 
block to reflect stor
age allocation. 

Sets variables for the 
processing of a single 
loop or the outer loop 
of a nest of loops. 

Controls the processing 
of script data asso
c1ated with current 
innermost loop. 

Compares the area code 
and the outer coeffi
cient of all other 
entries on the NEST 
SCRIPT roll to the bot
tom entry on the ,roll. 

SWeeps the script entries 
for the innermost loop, 
determining whether the 
outer coefficient is 
zero and that the inner 
coefficients are also 
the same. Depending 
upon the condition, the 
loops are re-registered 
on the LOOP SCRIPT 
roll. 

G0121 NOTE SCRIPT Establishe~; the nature of 
EXP the script entries as 

G0122 ESTABLISH 
STD SCRIPT 
EXP 

G0123 NOTE HI 
FREQ STD 

G0124 SCRIPT EXP 
UNIFY 

standard or non-
standard~ 

Forms the LOOP CONTROL 
and REG roll entries 
for each STD SCRIPT 
pointer found in WO, 
also registering the 
STD SCRIPT LOOP CONTROL 
rung. 

Checks the frequency used 
for a particular stand
ard script expression, 
and sets the frequency 
count. 

Controls the processing 
of innermost LOOP 
SCRIPT roll entries 
with matching area code 
and outer coefficients; 
also links each NONSTD 
roll entry with each 
STD roll entry, compar
i~g the induction 
coefficients. 

Routine 
~Name 
G0126 STANDARD 

G0127 CONVERT 
NONSTD 
SCRIPT TO 
STD 

G0128 SIGN ALLOC 
DISPLACE
MENT 

G0129 DELTA GE 
4087 UNIFY 

G0130 DELTA LE 
4087 UNIFY 

G013l ESTABLISH 
REG 
STRUCTURE 

G0132 EST. REG 
GROUP 

G0133 ESTABLISH 
LOOP 
CONTROL 

G0134 EST. LOOP 
CONTROL 

G0135 FORM OUTER 
SCRIPT 

Comments 
Processes STD SCRIPT roll 

._; ...... _-.. ""l',,"'lc-mr. __ , '1 
... "~,, nVl'''JJ..L.I LV.L.L 

entries have all been 
processed or have never 
existed. Moves entries 
to next outermost loop. 

picks a NONSTD roll entry 
w1th a m1n1mum dis
placement and processes 
it as if it were a 
standard script. 

utility routine to spread 
the sign of negative 
displacements. 

Processes paired STD or 
NONSTD roll entries 
with DELTA greater than 
4087 bytes. Generates 
second register and 
LOOP CONTROL entries. 

Processes paired STD or 
NONSTD roll entries 
with DELTA less than 
4087 bytes. DELTA is 
placed in each ARRAY 
REF entry in the chain. 

controls formation of 
LOOP CONTROL and REG 
roll groups for SCRIPT 
pointer in WOe 

Forms REG roll entry for 
SCRIPT pOinter in WOe 

Entry to establish loop 
control which sets up 
stamps for impending 
LOOP CONTROL group. 

Forms LOOP CONTROL group 
for SCRIPT entry in Wl. 

Processes paired STD or 
NONSTD roll entries 
wi th best match in 
inner coefficients. 
Forms SCRIPT entry for 
next outermost loop 
with coefficient dif
ferences in coefficient 
slots. 

G0136 NOTE SECOND Runs the ARRAY REF 
REG THREAD thread, removing. each 

link to provide for the 
second register. 

Appendix E: Miscellaneous Reference Data 197 



Routine 
Label Name 
G0137 UPDATE 

FREQS 

G0138 REG SCRIPT 
EXP 

G0139 PRUNE 
SCRIPT REL 
TO PNTR 

G0140 NOTE ARRAY 
REF DELTA 

G0141 REALIZE 
REGISTERS 
SWEEP 

G0142 NOTE HI 
FREQ REG 

G0143 ASSIGN 
TEMPS FOR 
REGS 

Comments 
Sums the frequencies of 

the STD or NONSTD pair 
to indicate increased 
usage. 

Registers the STD or 
NONSTD in Wo on the STD 
or NONSTD roll. 

Utility routine to remove 
SCRIPT groups. 

Adjusts the information 
indicated from the 
SCRIPT allocation ac
cording to the displa
cement to the asso
ciated ARRAY REF roll 
entries. 

Sweeps the REG roll, as
signing available reg
isters to the registers 
and temps, according to 
the frequency of use of 
the registers in the 
REG roll. 

which 
roll 
the 
of 

Utility routine 
notes the REG 
group indicating 
highest frequency 
use. 

Places next temp into the 
ARRAY REF run and ad
justs the LOOP CONTROL 
stamps to reflect temp 
usage. 

G0144 CONVERT REG Performs the actual 
TO USAGE transfer of REG or TEMP 

roll entries into the 
ARRAY REF threads. 

GEN LABEL LIST 

The labels contained in the follOWing 
list are illustrated in the flowcharts 
provided with the description of the Gen 
phase of the compiler. 

198 

Chart 
Label ID Routine Name 
(;0491 --os START GEN 

G0499 EA ENTRY CODE GEN 

GOS04 EB PROLOGUE GEN 

GOS08 EC EPILOGUE GEN 

G0712 ED GET POLISH 

G0493 EF LBL PROCESS 

GOS1S EG STA GEN 

G0496 EH STA GEN FINISH 

SUPPLEMENTARY GEN LABEL LIST 

The routines described in this section 
are listed by G number· labels which are 
presented in ascending order. These rou
tines are those used in the operation of 
Gen but not shown in the section pertaining 
to the phase. 

Routine 
LaQel Name _ 
G0494 CLINCH 

G0497 ZERO THE 
ACS 

G0498 MOVE ZEROS 
TOT AND C 

Comments 
Clears the base register 

table. 

Clears the accumulators 
to be used. 

Fills the indicated 
number of groups on the 
TEMP AND CONST roll 
with zeros. 

GOSOO INSERT PROG Puts name of source 
NAME IN module on CODE roll. 
CODE 

GOSOl MAIN 
PROGRAM 
ENTRY 

Builds instructions for 
the entry into the main 
program. 

GOS02 PRO AND EPI Determines the address 
ADCON GEN constant for prologues 

and epilogues for the 
instruction that is 
created. 

GOS03 ADCON MAKER Builds ADCON roll group 
GEN and places adcon 

instruction on CODE 
roll. 

GOSOS LOAD DMYS 
GEN 

Builds the code to load 
the dummy arguments 
specified in a 
subprogram. 



Routine 
Label Name 
G0506 BUILD DMY 

ARRAY DIM 

G0507 CALCULATE 
DMY DIM 

Comments 
Determines the dummy 

array dimensions sneci
fied- in the arg~ents 
for the subprogram. 

Calculates the dummy 
array dimensions speci
fied as arguments to a 
subprogram. and builds 
the appropriate in
structions. 

G0509 RESTORE DMY Restores the dummy argu-
GEN ments for value trans

fer at the end of a 
subprogram. 

G0510 TEST CALL 
BY NAME 

G0511 BUILD A 
MOVE DMY 
GROUP 

G0512 BUILD A 
STORE DMY 
ADD 

G0513 INCREMENT 
DMY PNTR 

G0514 BUILD A 
LOAD TWO 

G0516 ASSIGNMENT 
STA GEN 

G0517 AFDS S'fA 
GEN 

G0518 AFDS INIT 

G0519 ASSIGN 5TA 
GEN 

G0520 IF STA GEN 

G0521 LOGICAL IF 
STA GEN 

Determines whether the 
arguments to a subpro
gram were designated as 
call by name values. 

These routines build 
the instructions that 
transmit the indicated 
values transferred by 
the dummy arguments to 
subprogram. 

Controls the construction 
of the code for an 
assignment statement. 

Controls and constructs 
the instructiuns for an 
arithmetic function 
definition statement. 

Initializes the construc
tion of the code for an 
arithmetic function 
definition statement by 
constructing the label 
and jump instructions. 

Constructs 
code for 
statement. 

the 
an 

object 
ASSIGN 

Constructs the object 
code for an IF 
statement. 

Constructs 
code for 
statement. 

the object 
a Logical IF 

Routine 
Label Name 
G0522 BUILD JUMP 

INST 

G0523 GO TO STA 
GEN 

G0524 ASSIGN GO 
TO STA GEt~ 

G0525 GO TO JUMP 
GEN 

G0526 CGOTO STA 
GEN 

GC521 CGOTO FOR 
CALL RETURN 
GEN 

G0528 CONTINUE 
STA GEN 

G0529 BLOCK DATA 
GEN 

G0530 STA INIT 

G0531 DATA STA 
GEN 

Comments 
Constructs a branch in-

struction i with 
indicating type 
branch point. 

input 
and 

These routines control 
and construct the 
object code required to 
execute the indicated 
type of GO TO state
ment. 

These routines construct 
the object code for a 
GO TO statement that is 
the subprogram return. 

Returns. 

Sets up the rolls and 
data used in the con
struction of the object 
c,ode for the BLOCK DATA 
statement. 

Stores the statement 
number and leaves 
statement drives in Wo. 

Determines 
mode of 

the use 
the 

and 
data 

variables and con
structs the object code 
based on this 
information. 

G0532 ALIGN DATA Adjusts the data for 
instruction format. 

G0533 INIT FOR 
VAR 

G0534 MOVE DATA 

G0535 MOVE TO 
CARD IMAGE 

Obtains the base, size, 
displacement, and area 
code of the indicated 
variable and adjusts 
the instruction format 
for the variable 
according to the infor
mation obtained. 

Sets 
the 

up the beginning of 
data for card 

format. 

Obtains the location of 
the indicated data for 
transfer to instr~~~ion 
format. 

Appendix E: Miscellaneous Reference Data 199 



Routine 
Labe! Name 
G0536 MOVE TO 

CARD REPEAT 

Comments 
Controls the insertion of 

the data into the card 
format and the punching 
of the appropriate TXT 
card. 

G053? PUNCH A TXT Write a TXT card from 
CARD data whose location is 

G0538 PUNCH A TXT provided. 
CARD ML 

G0539 PUNCH TXT 
ENTRY2 

G0542 CALCULATE 
VAR SIZE 

Determines size of a 
variable from TAG field 
of pointer in WO. 

G0543 END STA GEN Builds code for AT if 
required and branches 
to TERMINATE PHASE. 

G0547 BSREF STA 
GEN 

G0548 STOP PAUSE 
STA GEN 

G0549 LOAD IBCOM 

G0550 RETURN STA 
GEN 

G0551 ENTRY STA 
GEN 
SPROG 
STA GEN 

Controls the construction 
of the Object code for 
a BACKSPACE, REWIND, or 
END FILE statement. 

Constructs the object 
code for a STOP or 
PAUSE statement. 

Builds an instruction for 
a call to the IBCOM 
routine. 

Builds the object code 
for a RETURN statement. 

Constructs the label in
struction for an ENTRY 
statement or the entry 
into a SUbprogram. 

G0552 DEFINE FILE Constructs the object 
STA GEN code instructions for 

G0553 GRNTEE A 
TEMP 

G0554 ILLEGAL 
AFDS STA 
GEN 

the DEFINE FILE 
statement. 

Ensures that the constant 
from DEFINE FILE is 
registered on the TEMP 
AND CONST roll. 

Generates an error link 
for a statement func
tion which was invalid. 

G0555 ILLEGAL STA Constructs a no-operation 

200 

GEN ENTRY instruction and an 
error link for the 
statement in error. 

Routine 
Label t!~ __ 
G0556 10 STA GEN 

G055? INIT 10 
LINK GEN 

G0558 UNIT 10 
ARG 

G0559 DIRECT 10 
ARG 

G0560 FORMAT 10 
ARG 

G0561 10 INITIAL 
ENTRY GEN 

G0562 BUILD UNIT 
ARG 

G0563 BUILD A 
LINK ARG 

G0564 BUILD 
FORMAT ARG 

G0565 GRNTEE 10 
LINK ADD 

G0566 IOL DO 
CLOSE GEN 

G0567 10 LIST 
GEN RUN 

Comments 
Determines the type of 

input/output statem~nt 
that is indicated and 
transfers to the rou
tines that process that 
particular typP. of 
statement. 

Initiates and sets data 
for the gene'rat ion of 
the input/output link
age. 

Determines the logical 
unit number of the 
input/output devicp. 

Sets up controls for the 
construction of the 
object code for dirpct
access input/output 
statements. 

Sets up data pertaininq 
to the FORMAT for the 
construction of the 
object code of an 
input/output statement 
under format control. 

Sets up code for the call 
to IBCOM to control 
execution of the indi
cated input/output 
statement. 

Constructs argument PdSS
ed for unit number in 
input/output linkages. 

Constructs the 
code for the 
designated 
input/output 
ments. 

Object 
arguments 
in the 

state-

Constructs the object 
code for the designated 
format control of an 
input/output statement. 

Constructs the object 
code for input/output 
linkage. 

Generates object code for 
closing of implied DO 
in I/O list. 

Determines whether I/O 
list is DO implied. 



Routine 
Label Name 
G0568 IOL DO 

OPEN GEN 

G0569 IOL ARRAY 
GEN 

G05iO 10 LIST 
PNTR GEN 
IOL PNTR 
GEN 

G0571 10 LIST 
ARRAY PNTR 
GEN 

G0572 BUILD 
ELEMENTS 
ARG 

G0573 10 LIST 
ARRAY 

DMY 

G0574 GLOBAL DMY 
TEST 

G0575 10 STA END 
10 STA END 
GEN 

G0576 BUILD 10 
LINK 

G0577 LOAD 
ADDRESS 
I BCOM 

G0578 INIT IBCOM 
PNTR AND 
ENTRY 

G0579 CALCULATE 
LENGTH AND 
TYPE 

G0580 DO STA GEN 

Comments 
Sets up the data for the 

generation of instruc
tions fo~ input/output 
00 loop. 

Generates linkage for 
secondary array entry 
to IBCOM. 

Determines the type of 
the I/O list, and con
trols the construction 
of the object code for 
the list. 

Sets up the data and 
determines the type of 
array list. 

Builds an argument for 
input/output linkage 
for a single element in 
an I/O list. 

Builds the object code 
for a dummy array I/O 
list. 

Determines whether the 
variable in question 
has been defined in 
usage as a global 
dummy. 

Generates call for end of 
I/O list. 

Controls construction of 
the object code to ter
minate an input/output 
operation. 

Inserts the absolute call 
to the system input/ 
output routine, I BCOM. 

Initializes for process
ing of input/output 
statements by storing 
code word and IBCOM 
pointer from POLISH 
roll. 

Determines the length and 
type of variables de
signated in input/ 
output statements. 

Determines the nature of 
the 00 statement, sets 
up the data for the 
code of the statement. 

Routine 
Label Name 
G0581 LOOPS OPEN 

GEM 

G0582 INIZ LOOP 
GEN 

G0583 INIZ GIVEN 
COEFF GEN 

G0584 DO CLOSE 
SBR 

GOS8S FIND COEFF 
INSTANCE 

G0586 NOTE TEMP 
REO 

G0587 INITIALIZE 
BY LOAD GEN 

Comments 
Obtains the 00 control 

data and controls the 
construction of the 
appropriate instruc
tions. 

Determines the nature of 
the indicated DO loop 
after determining 
whether a. loop exists. 

Constructs the object 
code for the initiali
zation of the indicated 
induction variabl~ 
coefficient. 

Constructs the object 
code for the close of a 
DO loop after setting 
up controls for the 
increment and terminal 
values of the loop 
iteration. 

Determines the existence 
of the-indicated nature 
of a loop through com
parison of the desig
nated traits and 
coefficient. 

Determines whether a 
register has been 
assigned for the script 
expression in question 
or whether a temporary 
storage is required. 

Generates the load of 
registers to be used 
throughout a DO loop. 

GOS88 GRNTEE TEMP Builds a store instruc-
STORED GEN tion for the temporary 

storage used by the 
script expression. 

G0589 GRNTEE 
SOURCE REG 
LOADED 

G0590 INCR GIVEN 
COEFF GEN 

Determines the area and 
location for the regis
ter to be used by the 
script expression, and 
generates the load 
instruction for the 
indicated temporary 
storage. 

Determines the nature and 
use of the loop incre
ment and builds the 
appropriate instruc
tions for the execution 
of the increment. 

Appendix E: Miscellaneous Reference Data 201 



Routine 
Label Name 
(;0607 CALL STA 

GEN 

GOb08 FLP AND 
PREP VAR 

C;Ob09 EXP GEN 
BY MODE 

(;0610 EXP GEN .l\ND 
GRNTEE AC 

Corrunents 
Calls the routines which 

build the object code 
for the CALL statement. 

Flips POLISH roll and 
moves first variable to 
WORK roll. 

Controls 
of the 

the determining 
mode of the 

indicated expression. 

Generates code for ex-
pression on bottom of 
POLISH roll and ensures 
that result is in a 
register. 

G0611 GRNTEE EXP Guarantees that the mode 
of the expression is 
positive. 

G0612 EXP GEN 

C;0613 GEN RUN 

GOb14 NOT GEN 
UNARY MINUS 
GEN 

(;0615 DIV GEN 

(;Ob1 b INTEGER 
DIV GEN 

GOb17 SUB GEN 

G0618 ADD GEN 

G0619 MPY GEN 

G0620 INTEGER 
GEN 

G0621 INTEGER 
DIV END 

G0622 SUM OR 
GRNTEE 

202 

MPY 

MPY 

PROD 

Obtains the expression 
for GEN processing. 

Determines the operation 
mode of the entity in 
question. 

Inverts sign indicator 
for variable on bottom 
of WORK roll. 

Controls production of 
object code for divide 
operation. 

Generates code for inte
ger divide. 

Generates code for sub
tract operation. 

GeneJ.:ates code for ado 
operation. 

Controls production of 
object code for multi
ply operation. 

Generates code for inte-
ger multiply. 

Corrunon end for multiply 
and divide generation 
routines; records 
register usage. 

Guarantees that one of 
the two elements on 
WORK roll is in a 
register and that mode 
of operator is correct. 

Routine 
Label Name 
G0623 DRIVER GEN 

G0624 AND GEN 

G0625 AND FINISH 
GEN 

G0626 OR GEN 

G0627 OR FINISH 
GEN 

Comments 
If an array driver, goes 

to SCRIPT PREP; if not, 
exits false indicating 
end of an expression. 

Generates code for an AND 
operation. 

Actually builds an AND 
operation on CODE roll. 

Generates code for an OR 
operation. 

Actually builds an OR 
operation on CODE roll. 

G0628 PREPARE FOR Sets up the data for the 
LOGICAL GEN statement containing a 

logical operation. 

G0629 EQ GEN 

G0630 NE GEN 

G0631 LT GEN 

G0632 GT GEN 

G0633 GE GEN 

G0634 LE GEN 

Generates code for an EO 
relational operation. 

Generates code for an NE 
relational operation. 

Generates code for an LT 
relational operation. 

Generates code for a GT 
relational operation. 

Generates code for a GE 
relational operation. 

Generates code for an LE 
relational operation. 

G0635 RELATIONAL Builds the object code 
GEN instructions based on 

the relational condi
tion specified in the 
logical operation. 

G0636 PHEPARE FOR Converts and adjusts data 
RELATIONAL for construction of the 

object code of a rela
tional comparison. 

G0637 POWER GEN 

G0638 POWER AND 
COMPLEX MPY 
DIV GEN 

Builds 
linkage 
roll. 

exponentiation 
on the CODE 

Sets up the data for 
operations involving 
multiplication or divi
sion of exponentiated 
or complex variables. 



Routine 
Label Name 
G0639 INTEGER 

POWER GEN 

G0640 SPROG GEN 

G0641 SPROG GEN 
SUB 

G0642 SPROG END 
GEN 

G0643 SPROG ARG 
SEQ GEN 

G0644 REG SPROG 
ARG 

G0645 GRNTEE ADR 
GEN 

G0646 TEST CONST 
ARG 

G0647 TEST AND 
STORE REGS 

G0648 GRNTEE AC 
GEN 

G0649 GRNTEE NEW 
AC GEN 

G0650 PICK A NEW 
AC 

G0651 PICK FL 
AC 

G0652 PICK A 
COMPLEX AC 

Comments 
Builds the appropriate 

load and multiply 
instructions for expo
nentiation depending on 
the mode of the 
operation. 

Determines the nature of 
the operand of a CALL 
statement or of a 
subprogram. 

Generates the code for a 
SUbprogram call includ
ing argument calcu
lations. 

Constructs the object 
code for the return or 
close of a subprogram. 

Controls the interpreta
tion of the sequence of 
arguments designated to 
a subprogram. 

Controls the register 
assignment to sub
program arguments as 
they are encountered in 
sequence. 

Guarantees that the 
subprogram arguments 
are assigned and builds 
the indicated load and 
store instructions. 

Determines mode of a con-
stant subprogram 
argument. 

Tests to determine if any 
register used as an 
accumulator contains 
data; if so, generates 
code to store the con
tents in a temporary 
location. 

Stores the contents of 
WO in an accumulator if 
not already designated. 

These routines deter-
mine the accumulator to 
be used in an indicated 
operation depending 
upon the mode of the 
variable in question. 

Routine 
Label Name 
G0653 CLEAR A 

PAIR 
G0654 PICK A 

PAIR 
G0655 PICK A 

PAIR END 

G0656 TEST FOR 
BEST PAIR 

G0657 GRNTEE 
POSITIVE 
GEN 

G0658 COMP FX 
CONST 

G0659 COMP FL 
CONST 

G0660 COMP DP 
CONST 

G0661 COMP 
COMPLEX 
CONST 

Comments 
These routines determine 

and clear a pair of 
fixed or floating ac
cumulators depending on 
the type of the reg
ister in WOe These 
routines are used in 
integer, multiply, 
divide: and complex 
operations,. 

Determines the two opti
mal accumulators to be 
used for the operation 
indicat-ed., 

Sets the mode of the 
indicates accumulator 
to positive if not 
already set, and 
generates appropriate 
code. 

Set the mode of the in
dicated constant. 

Sets the mode of the 
indicated constant. 

G0662 CORRECT FOR Complements the value 
SIGN DATA 1 DATAl. 

in 

G0663 INCLINE 
FUNCTION 
GEN 

G0664 CONVERSION 
FUNCTION 
GEN 

G0665 ABS 
FUNCTION 
GEN 

G0666 MOD 
FUNCTION 
GEN 

G0667 INT FUNC
TION GEN 

G0668 AIMAG FUNC
TION GEN 

G0669 CMPLEX 
FUNCTION 
GEN 

G0670 TWO ARG 
INLINE 
COMMON 

G0671 CONJG FUNC-
TION GEN 

Sets up table for the 
generation of code for 
in-line functions. 

Generates code to perform 
an in-line mode conver
sion. 

These routines generate 
the object code in
structions for the in
line function indicated 
by the name of the rou
tine. 

Appenqix E: Miscellaneous Reference Data 203 



Routine 
Label Name 
G0672 SIGN FUNCT 

GEN 
G0673 DIM FUNCT 

GEN 

G0674 GRNTEE 
BOTH MODES 

G0675 GRNTEE 
MODE Wl 

G0676 LOGICAL
CONVERSION 

G0677 FX 
CONVERSION 

Co!!!ments 
(see Label GOEfiS) 

sets the rrode of the data 
in wo and Wl to posi-
tive if not already 
set. 

Determines the mode of 
the variable in Wl and 
transfers to the appro-
priate conversion rou-
tine cJepending on the 
mode of WO. 

Places the logical vari
able contained in Wo 
into an accwnulator. 

Places the variables con
tained in Wo and Wl in 
an accumulator if the 
mode is 1*2; otherwise, 
a conversion to float
ing point is made. 

G0678 FL Tests the conten~s of WO 
CONVERSr0N and Wl for floating 

v.'lrL:tbl«,·" ', .. n~tants. 
11 tht'~ contents are IIVi... 

floating variables or 
constants, it deter
mines the nature of the 
data, registers the 
variable or constant, 
and assigns an accumu
lator for the oper
ation. 

G0679 CONVERT TO 
COMPLEX 
END 

Generates code to clear 
the imaginary regjster 
anc. loads the real 
register in real to 
complex conversion. 

G0680 TEST A FL 
CONST 

G0681 DP 
CONVERSION 

204 

Exits false if pointer in 
Wo is not to a floating 
constant; otherwise, it 
loads the constant into 
central area and exits 
true. 

Determines the nature of 
the double-precision 
variable or constant 
indicated, converts 
into the indicated for
mat, assigns an accumu
lator, depending on the 
mode of the variable. 

Routine 
Label Name 
G0682 TEST DP 

CONST 

G0683 COMPLEX 
CONVERSION 

G0684 DP COM1LEX 
CONVERSION 

GOb85 COMPLEX 
AC TEST 

Comments 
Exits false if pointer in 

Wo is not to a doubJe
precision constant; 
otherwise, loads con
~tant into central area 
and exits true. 

Determinp~ thc mode and 
nature of the two com
ponpnt~; of thp complex 
varidbl~ or constant. 

[)et.f> r mi tH':' t hf' modC' and 
rcgl!'itC[S th(~ indicated 
double-precision com
plex variable or 
constant. 

Sets up 
proper 
value 
complex. 

FL AC roll for 
pointers to a 
convertpd to 

G0686 AC END AND USf.·d dUTing conversion, 
CONV RETEST to Sf't_ up AC roll, and 

to determine whether 
conversion is complete. 

G0687 CONVERT Sets up WORK roll so that 
RETEST GRN'I'EE Monr.; Wl can 

detenni n. whc-ther a 
conver: ion is complet.e. 

G0688 REGISTER Records constant. in wo as 
WORK CONST an integer constant. 

G0689 REGISTER FX Register the constant 
CONST from DATA area on the 

G0690 REGISTER FL indicated roll if not 
CONST already defined; con-

G0691 REGISTER DP stant is compiler gen-
CONST era ted. 

G0692 REGISTER 
COMPLEX CONST 

G0693 REGISTER DO 
COMPLEX CONST 

G0695 FLOAT A FX 

G0696 FIX A FL 

G0697 FLOAT AND 
FIX COMMON 

G0708 TEST AC 
AC TEST 

Converts a floating con
stant or generates code 
to convert a floating 
variable to fixe~ mode. 

Converts a fixed mode 
constant or generates 
code to convert a fixed 
variable to floating 
mode. 

Common exit for routines 
which write code to 
float or fix variables. 

Determines 
mode of 

whether the 
the indicated 

accumulator is fixed or 
floating. 



Routine 
Label Name 
G0709 AC END 

G0710 GRNTEE AC 
ZERO 

G0711 
REG 

Comments 
Determines whether one or 

two accumulators are 
being used. 

Assures that the accumu
lator being used in the 
operation is register 
zero. 

Clears appropriate entry 
on AC roll for a 
register which has been 
stored. 

G0713 CLEAR THREE Remove indicated number 
ru~D EXIT of groups from WORK 
TRUE roll, set ANSWER BOX to 

G0714 CLEAR TWO true, and return. 
AND EXIT 
TRUE 

G0715 CLEAR ONE 
AND EXIT 
TRUE 

G0716 EXIT TRUE 
EXIT TRUE 
ML 

Sets ANSWER BOX to true 
and returns. 

G0718 CLEAR THREE Remove indicated number 
AND EXIT of groups from WORK 
FALSE roll, set ANSWER BOX to 

G0719 CLEAR TWO false, and return. 
AND EXIT 
FALSE 

G0720 CLEAR ONE 
AND EXIT 
FALSE 

G0721 EXIT FALSE 
EXIT FALSE 
ML 

G0723 CLEAR THREE 
EXIT 
CLEAR THREE 
AND EXIT 

G0724 CLEAR TWO 
EXIT 
CLEAR TWO 
AND EXIT 

G0725 CLEAR ONE 
EXIT 
CLEAR ONE 
AND EXIT 

G0727 EXIT 
EXIT ML 

G0728 EXIT ANSWER 
ML 

Sets ANSWER BOX to false 
and returns. 

Remove indicated number 
of groups from WORK 
roll and return. 

Returns. 

Sets ANSWER BOX and exits 
for EXIT routines which 
set ANSWER BOX. 

Routine 
Label Name 
G0730 ADCON MADE 

LBL MAKER 

G0731 CHECK JUMP 
LBL 

G0132 MADE LBL 
MAKER 

Comments 
Bui Ids ADCON roll and 

returns a pointer to 
Ul~ start of a group on 
the roll. 

Determinf>s whether point
er in Wo refers to a 
jump target label. 

Creates 
TABLE 

entry 
roTl 

and label, 
pointer 
created. 

on BRANCH 
for made 

returns 
to group 

G0733 SCRIPT PREP Sets up the data for 
calculation of 
indicated script 
pression. 

the 
the 
ex-

G0734 CALCULATE 
SCRIPT 

G0735 TEST END 
SCRIPT 

G0736 CALCULATE 
OFFSET AND 
SIZE 

G0737 GRNTEE REG 
9 

G0738 TEST AND 
STORE REG 9 

G0739 DTlTTn 
UV,L.J..jlJ A 
SHIFT 9 

G0744 BID INIT 
G0745 BIM INIT 
G0746 BIM BID 

INIT 
G0747 

G0748 EXIT FULL 

BID 
BIDPOP 

Determines the mode and 
operation of the vari
ables contained in the 
script expression. 

Determines the end of the 
script expression. 

Determines the size of 
each element contained 
within an expression, 
and the displacement 
pertaining to each 
array. 

Place the index values 
for arrays in register 
9 if not already set. 

Builds a shift register 9 
instruction for sub
scripting; shift length 
is determined by array 
element size. 

Initializes data for the 
contsruction of the in
struction designated by 
the BID, BIN, or BIM 
POP instructions. 

Used on entry to BIN when 
BIN fills the EXIT 
roll. 

This is the assembler 
language routine which 
constructs the instruc
tion designated by the 
BIDPOP instruction. 

Appendix E: Miscellaneous Reference Data 205 



Routine 
Label Name 
G0150 BIN 

BINPOP 

G0151 NOTE A 
CSECT 

G0152 BIM 
BIMPOP 

G0153 RX FORMAT 

G0154 RR FORMAT 

G0755 ADDRESS 
MAKER 

G0756 BUILD A 
BASE REG 

Comments 
This is the assembler 

language routine which 
constructs the instruc
tion designated by the 
BINPOP instruction. 

This routine obtains the 
Control section in 
which the current 
instruction being gen
erated is to be placed. 

This is the assembler 
language routine which 
constructs the instruc
tion designated by the 
BIMPOP instruction. 

General routine used to 
build all RX type 
instructions. 

This routine implements 
the RR format designa
tion for the instruc
tion being generated. 

Used to build all base, 
displacement, and index 
type addresses. 

Determines the base loca
tion within a particu
lar control section at 
which the object code 
instructions begin. 

G0757 SCALAR Builds address for the 
OPERAND specified type of oper-

ARRAY and. 
OPERAND 

GLOBAL 
SPROG 
OPERAND 

USED FUNC
TION LIB 
OPERAND 

NAMES LIST 
OPERAND 

FORl-"AT LBL 
OPERAND 

GLOBAL DMY 
OPERAND 

G0758 DMY LBL 
COMMON 

Generates address for 
FOMAT references. 

G0159 LBL OPERAND Builds address for refer
LOCAL SPROG ences to labels and 
OPERAND statement functions. 

206 

Routine 
Label ~~!!!£ __ 
G0760 SPROG ARG 

OPERAND 

G0761 BRr..NCH 
TABLE 
OPERAND 

G0162 BRANCH 
TABLE 
COMMON 

G0763 BRANCH 
SPROG 
COMMON 

G0164 T AND C 
OPERAND 

G0765 T AND C 
COMMON 

G0166 T AND C B 
COMMON 

G0167 LOCAL D~jy 

OPERAND 

G0168 FX CONST 
OPERAND 

G0769 FX FL CONST 
SEARCH AND 
REG 
FL CONST 
OPERAND 

oments 
Builds address for refer-

ence to subprogram 
argument Ii st. 

Builds address for refer
ences to made labels. 

Used by LBL and BRANCH 
TABLE OPERAND routines 
to contstruct address. 

Used by LBL, BRANCH TABLE 
and SPROG ARG OPERAND 
to construct address. 

Constructs address for 
references to temporary 
storage or constants. 

Used for T AND C OPERAND 
and pointers to con
stant rolls. 

Common exit for all 
branch and temporary 
and constant operand 
routines. 

Determines the base loca
tion for the indicated 
operand and builds the 
code data from this 
information. 

Determines the size of 
the fixed constant 
operand and constructs 
the instruction depend
ing upon this infor
mation. 

Moves single-precisi .,n 
constant pointed to 
TEMP AND CONST roll if 
not already on roll. 

G0110 FX FL CONST Performs part of move of 
COMMON constant to TEMP AND 

CONST roll. 

G0771 SEARCH AND 
REG SP 
CONST 
SEARCH AND 
REG FX 
CONST 
SEARCH AND 
REG FL 
CONST 

Searches TEMP AND CONST 
roll, registers con
stant if not already 
there, and returns 
pointer to TEMP AND 
CONST roll group_ 



Routine 
Label Name 
G0772 REGSP 

,-;,-,'lo.'Trm 
\"'Vl~u.L 

G0773 DP FL CaNST 
OPERAND 
COMPLEX 
CONST 
OPERAND 

G0774 SEARCH AND 
REG DP CONST 
SEARCH At'ID 
REG COMPLEX 
CONST 

G0775 REG DP 
CONST 

<;0776 DP CGt-1PLEX 
CONST 
OPERAND 

G0777 ~;EARCH AND 
REG DP 
COMPLEX 
CON!::iT 

G0778 REG DP 
COMPLEX 
CONST 

Comments 
Registers single-preci-

~"VJ.l COiistar1t .-~r. TE..M~ ,-,u 

At-In CaNST roll. 

Construct address for 
references to double-
precision real and 
single-precision com-
plex constants. 

Ensures that a double-
precision real or 
single-precision com-
plex constant is on the 
TEMP AND XONST roll and 
returns a pointer to 
it. 

Registers a new double
precision constant on 
the TEMP AND CONST 
roll. 

Constructs address for 
reference to a double
precision complex con
stant. 

Ensures that a double
precision complex con
stant is on the TEMP 
AND CONST roll and 
returns a pointer to 
it. 

Registers a new double
precision complex con
stant on the TEMP AND 
CONST roll. 

G0779 TEST DOUBLE Determines if the address 
WORD designated to the vari-
BOUNDARY able or constant in Wo 

oegins on a doubleword 
boundary. 

G0780 ARRAY REF 
OPERAND 

G0781 LOAD REG 
FROM TEMP 

G0782 ARRAY PLEX 
OPERAND 

Handles array reference 
pointers to obtain 
scripted arrays ad
dresses. 

Generates a load of a 
base register fr~m a 
temporary storage loca
tion. 

Handles building address
es when array plex is 
the indicated operand. 

G0783 SRCH AND ST Stores register 9 in a 
X9 FROM temporary register if 
ARRAY PLEX needed for generatjon 

of array plex address
es. 

Routine 
Label Name 
G078ii STORE IN 

TE~.P 

G0785 STORE AND 
RETURN 
TEMP 

G0786 SEARCH 
TEMP ROLL 

Comments 
Generates code to store 

that register in a tem
porary location if Wo 
is a pointer to a 
register. 

Uses a temporary location 
in checking temporary 
pointers for the indi
cated constants. 

Beginning with a pointer 
to the TEMP PNTR roll 
in WO, searches for an 
available temporary al
ready defined. Returns 
true, with pointer to 
TEMP AND CaNST roll if 
found; otherwise, re
turns false. 

G0787 OPERAND RUN Selects processing rou-

G0930 SPOIL STO 
VAR 
SPOIL STORE 
VAR 

tlne for present 
operand from pointer. 

Determines whether point
ed to variable is being 
used in subscript which 
is now contained in 
register 8 or 9; if so, 
spoils that register. 

G0931 SPOIL STORE Determines whether a 
VAR NON stored variable which 
READ 10 has not appeared in a 

READ should be stored. 

G0932 CLEAR ONE 
AND SPOIL 
CEAD 

G0933 SPOIL CEAD 

Determines if pointed to 
variable is COMMON, 
EQUIVALENCE, alterable, 
or dummy; if so, spoils 
any register containing 
a subscript which uses 
any CEAD variable; and 
prunes one group from 
WORK. 

Same as 
SPOIL 
does 
roll. 

C LEAR ONE AND 
CEAD except it 
not prune WORK 

G0934 TEST A CEAD Tests to determine if 
variable pointed to by 
wo is COMMON, EQUIVA
LENCE, alterable, or 
dummy. 

G0935 NO ARG 
SPRaG END 
GEN 

Entry point for generat
ing a subprogram call 
without arguments. 

Appendix E: Miscellaneous Reference Data 207 



Routine 
Label N=am=e __ 
G093? SIMPLE 

SCRIPT PREP 

G0938 CLEAR 3 
EXIT BIN 

G0939 CLEAR 1 
EXIT BIN 

G0940 EXIT BIN 

G0941 SUBCHK GEN 

G0942 SIMPLE 
SCRIPT 
OPERAND 

G0943 TEST FOR 
HIT 

G0944 LOAD 
SIMPLE X 
REG 

G0945 PICK A NEW 
SIMPLE X 
REG 

G0946 CALC ELEM 
SIZE AND 
SHIFT 

G0947 AT STA GEN 

G0948 TRACE ON 
STA GEN 

G0949 TRACE OFF 
STA GEN 

G0950 DEBUG 
INITIAL 
LINKAGE GEN 

G0951 DEBUG VAR 
ADR GEN 

G0952 DEBUG 
ELEMENTS 
GEN 

208 

Comments 
BuildS---ARRAY PLEX roll 

for subscripts handled 
in registers 8 and 9. 

Exits from BIN, BIM and 
BID POP subroutines 
which remove the indi
cated number of groups 
from WORK. 

Exits from BIN, BIM, and 
BID POP subroutines. 

Builds code for SUBCHK 
entry if required. 

Generates the code to 
compute a subscript 
value to be held in 
register 8 or 9. 

Determines whether reg
ister 8 or 9 already 
contains the present 
subscript. 

Generates code to set up 
register 8 or 9. 

Determines whether regis
ter 8 or 9 will be used 
for subscript which 
must be loaded. 

Calculates array element 
size and the length of 
shift necessary to mul
tiply by that value. 

Generates the object code 
for an AT statement. 

Generates DEBUG linkage 
for a TRACE ON 
statement. 

Generates DEBUG linkage 
for a TRACE OFF 
statement. 

Generates initial linkage 
to DEBUG. 

Generates address for 
IN IT or SUBCHK 
variable. 

Generates number of ele
ments for DEBUG link
age. 

Label 
G0953 

Routine 
Names 
BIN 
VARIABLE 
NAME 

G0954 RETURN 
SCALAR OR 
ARRAY PNTR 

G0955 DEBUG INIT 
GEN 

Comments 
Puts name of 

CODE roll. 
variable on 

Returns pointer to a 
SCALAR or ARRAY roll 
group from less direct 
reference. 

Generates DEBUG linkage 
for INIT variables. 

G0956 DEBUG SHORT Generates DEBUG linkage 
of a full ar-LIST INIT for INIT 

GEN ray. 

G0957 DEBUG DMY 
INIT GEN 

Generates DEBUG 
for INIT of 
variable. 

linkage 
a dummy 

G0958 DISPLAY STA Generates DEBUG linkage 
GEN for a DISPLAY 

statement. 

G0959 DEBUG INIT 
ARG GEN 

EXIT LABEL LIST 

Generates DEBUG calls 
after a CALL statement. 

The labels enumerated in the following 
list are used in the flowcharts provided 
for the illustration of the major routines 
used by Exit. 

Label 
G0381 
G0382 
G0383 
G0384 
G0399 
G0400 
G0402 
G0403 
G0404 
G0405 
G0416 
G0424 
G0564 

Chart 
-1!L. 

09 
FA 
FB 
FC 
FD 
FE 
FF 
FG 
FH 
FI 
FJ 
FK 
FL 

Routine Name 
EXIT PASS 
PUNCH TEMP AND CONST ROLL 
PUNCH ADR CONST ROLL 
PUNCH CODE ROLL 
PUNCH BASE ROLL 
PUNCH BRANCH ROLL 
PUNCH SPROG ARG ROLL 
PUNCH GLOBAL SPROG ROLL 
PUNCH USED LIBRARY ROLL 
PUNCH ADCON ROLL 
PUNCH RLD ROLL 
PUNCH END CARD 
PUNCH NAMELIST MPY DATA 

SUPPLEMENTARY EXIT LABEL LIST 

The routines described in this section 
are listed by G number labels which are 
presented in ascending order. These rou
tines are those used in the operation of 
Exit which are not shown in the section of 
flowcharts for the phase. 



Routine 
Label Na~___ Comments 
G0385 SWEEP CODE Determines the nature of 

ROLL 
SWEEP CODE 
ROLL ML 

G0386 PUNCH INST 
PUNCH INST 
ML 

G0388 PUNCH TWO 
HALFWORDS 

G0389 PUNCH ONE 
HALFWORD 

G0390 PUNCH 
THREE 
HALFWORDS 

G0391 PUNCH CODE 

G0392 ABS PUNCH 

(;0393 RELOC 
CaNST 
PUNCH 

G0394 ABS CONST 
PUNCH 

G0396 

G0397 

G0398 

G0401 

ABS CONST 
PUNCH ML 

DEFINE LBL 

ADCON 
PUNCH 

POC DATA 
PUNCH 

SWEEP BASE 
BRANCH 
ROLL 

G0406 HALF WOIJD 
WO TO TXT 
CARD 

G0407 WO TO TXT 
CARD 
WO TO TXT 
CARD ML 

::. word on 
and processes it 
cording to type. 

Determines the 
instruction 

type 
to 

ac-

of 
be 

p~nched (one, two, or 
three halfwords). 

Sets up a two halfword 
instruction format. 

Sets up a one halfword 
instru~tion format. 

Sets up a three halfword 
instruction format. 

Punches the indicated 
instruction in the 
indicated format. 

Sets up for the punching 
of object module abso
lute constants. 

Sets the format for the 
punching of a relocat
able absolute constant. 

Punches the indicated ab-
solute constants in 
the Object module. 

Defines indicated label 
on BRANCH TABLE roll. 

Punches the address con-
stant indicated in Wo. 

Sets up the information 
neederl for the listing 
and punching of code 
contained on the CODE 
roll. 

Initializes for the 
punching of the groups 
contained on the BASE 
and BRANCH TABLE rolls. 

A halfword instruction 
format is set up for 
the contents of WOe 

Transfers the contents of 
Wo to the output area 
to be punched. 

.Routine 
Label ~!~ __ _ 
<;0409 MOVE CODE 

G0410 INITIALIZE 
TXT CARD 

G0411 INITIALIZE 
TXT CARD ML 

GC412 PUNCH 
PAP.TIAL 
TEX,\ CARD 

G0413 PUNCH A 
CARD ML 

G0414 PUNCH AN 
ESD CARD 

G0411 DEPOSIT 
LAST FSD 
NO. ON 
RLD CARD 

G0418 DB SECOND 
RLD WORD 
WITH CONT 

GOLI19 DB SECOND 
RLD WORD 
WITH NO 
CaNT 

GOll20 DB S~COND 

RLD WORD 

G0421 DEPOSIT 
WORD ON 
RLD CARD 

G0422 PUNCH AN 
RLD CARD 

G0423 TERMINATE 
RLD 
PUNCHING 

G0425 LIST CODE 

G0426 RS OR SI 
FORMAT 

Comments 
Transfers the indicated 

;=;;. .. - ..... ~.~ ~ .. - .... ~ ""' ....... ;;.;;, .. ~ __ ~ •• .L. ___ _ 
~vu..:; '-v '-110::;- VU'-l'UL. Cl.&.II:Cl 

to be punched. 

Initializes the for~at 
for the punching of the 
TX'I' cards. 

Punches any ~art of a 1XT 
card. 

Punches a complete TXT 
card. 

Sets the format 
punching of 
card. 

for the 
an ESD 

Obtains and deposits the 
last ESD number on the 
indicated RLD card for 
punching. 

Sets the format of a card 
with a continuation to 
a second card. 

Turns off the continua
tion indicator for the 
punching ot the RLD 
card. 

Places the second word 
into the RLD format in 
ttle output area. 

Placps the indicated word 
into the appropriate 
location in the RLD 
format. 

Punches the indicated RLD 
card. 

Determines whether the 
RLD card is full and 
sets controls accord
ingly. 

Sets up the format for 
the object module list
ing, and determines the 
instruction format for 
each indicated instruc
tion to be printed. 

Determines whether the 
indicated instruction 
is RS or SI format. 

Appendix E: Miscellaneous Reference Data 209 



RoutinE' 
Label Name 
Goii'27 RSFORMAT 

G0428 SI FORMAT 

. G0429 RX FORMAT 

G0430 RR FORMAT 

G0431 SS FORMAT 

G0432 ADCON LIST 

G0433 DC LIST 

G0434 PRINT 
ADCON 
tSl 

G0435 PRINT A 
MADE LBL 

G0436 MADE LBL 
ADCON LBL 
COMMON 

G0437 PRINT A 
LBL 

G0438 PRINT BCD 
OPERAND 

G0439 PRINT A 
LINE 
PRINT A 
LINE PLUS 
ONE ML 

G0440 PRINT A 
LINE NL 

210 

Comments 
SetS-up-the RS format for 

the indicatE'd instruc
tion. 

Sets up the SI format for 
the indicated instruc
tion. 

Sets up the RX format for 
the indicat~d instruc
tion. 

Sets up the RR format for 
the indicated instruc
tion. 

Sets up the S5 format for 
the indjcated instruc
tion. 

Sets up the format (DC 
format) for the address 
constants in the object 
module that are to be 
listed. 

Lists DC constants. 

Sets controls for the 
printing of the indi
cated address constant. 

Sets controls 
printing of 
cated label 
been created 
compiler. 

for the 
the indi
that has 

by the 

Inserts the 
label into 
output area. 

indicated 
the print 

Prints the indicated 
label on the object 
module listing. 

Inserts the indicated op
erand into the appro
priate position of the 
object listing in the 
output a.rea. 

Print the indicated line 
once a full line haa 
been set up in the out
put area. 

Routine 
Label Name 
GOiiii3 PHINT-

HEADING 
PRINT 
HEADING 
ML 

G0444 PRINT 
COMPILER 
STATISTICS 

£Q!!!!!!~!!~~ 
Prints the indicated 

heading that is to 
appear on the Object 
module listing. 

Sets up the indicated 
message in the print 
output area •. 

G0445 PRINT CSECT Sets up the indicated 
the print MEMORY message in 

REQMTS output area. 
MESS 

G0446 PRINT 
CSECT 
TOTAL 
MESSAGE ML 

G0447 PRINT 
CSECT 
MESSAGE 

G0448 CONY AND 
PRINT 
D2(B2) ML 

G0449 CONV AND 
PRINT 
D1Bl ML 

G0450 CONV AND 
PRINT 02 ML 
CONY AND 
PRINT 01 ML 

G0452 CONY AND 
PRINT Bl ML 
CONY AND 
PRINT B2 ML 

G0453 CONY AND 
PRINT R2 ML 
CONY AND 
PRINT X2 ML 

GOIa 54 CONY At.O 
PRINT 12 ML 

G0455 CONV AND 
PRINT Rl filL 
CONV AND 
PRINT Ll ML 

Sets up the 
message in 
output area. 

Sets up th€ 
message in 
output area. 

indicated 
the print 

indicated 
the print 

Converts the in~icated 
general register desig
nation for the RX, RS, 
and RR formats. 

Converts 
address 
register 
for the 
formats. 

the indicated 
and general 

designation 
SI and SS 

Converts the indicated 
address and general 
register designations 
to instruction format. 

Converts the indicated 
address and general 
register designations 
to instruction format. 

Converts the indicated 
address and general 
register designations 
to instruction format. 

Converts the indicated 
address and general 
register designations 
to instruction format. 

Converts the indicated 
address and general 
register designations 
to instruction format. 

G0456 CONY WO AND Converts the contents of 
PRINT WO to decimal and in-
CONVERT WO serts into print output 
AND PRINT area. 



Routine 
Larel NaJI\e 
G0458 CONV AND 

PRltiT PLUS 
ONE ML 

G0459 PRINT A 
COMMA ML 

G0460 PRINT A 
LEFT PAREN 
ML 

G04b! PRINT A 
RIGHT PAREN 
ML 

G0462 PRINT A 
CHAR ML 

G0464 CLEAR ONE 
EXIT 
CLEAR ONE 
AND EXIT 

Comments 
Converts a number to dec

imal and places in 
print buffer. 

Places a comma into print 
output area. 

Places a left parenthesis 
into the print output 
area. 

Places right 
thesis into the 
output area. 

paren
print 

Places the indicated 
character lnto the 
print output area. 

Prunes one word from the 
WORR roll and exits. 

Routine 
Label Name 
G0465 EXIT 

EXIT ML 
EXIT 
ANSWER ML 

G0566 RLD ALIGN 
SWEEP TE 

G0567 RLD ALIGN 
TEST 
SWEEP TEST 

G0569 GET ADR 
FROM PNTR 
ML 

Comments 
Obtains the last entry on 

tne EXIT roll and 
transfers to the indi
cated location. 

Sorts RLD entries so that 
all RLDs in one CSECT 
appear together. 

Determines 
ent RLD 
CSECT nov 
structed. 

whether pres
is in the 
being con-

Gets location on DATA VAR 
roll from pointer in 
Wo. 

Appendix E: Miscellaneous Reference Data 211 



This appendix describes the logic of the 
FORTRAN IV library subprograms. As the 
compiler examines the user's FORTRAN source 
sta~ements and translates them into an 
object module, it recognizes the need for 
certain operations the library is designed 
to perform. At the corresponding pOints in 
the object module, the compiler inserts 
calls to the appropriate library subpro
grams. At linkage edit time, copies of 
these library subprograms are made part of 
the load module. Then, at execution time, 
the library subprograms perform their 
various functions. The nature of the 
user's program determines which and how 
many library sUbprograms are included in 
his load module. 

The library performs a variety of func
tion:." which are of five general types: 

• load module initialization and termina-
~l(m activities 

• input/output operations 
• error handling 
• ~ata conversion 
• mathematical and service functions 

It is an important library responsibility 
to form an interface between the load 
moclulp dnd the operating system: library 
s~bproqrams interface with the data manage
mpnt access methods, provide exit routines 
for the system interrupt handler and 
at-.normal termination processor, and call 
the :-,llpervisor for varlOUS services. 

The precise composition and size of a 
useros verS10n of the FORTRAN IV library 
will depend on what options he chose at 
system generation time. The actual loca
tion of his permanent library copy (the 
partitioned data set SYS1.FORTLIB) is also 
dependent on his installation choice. 

A few subprograms, commonly thought of 
as FORTRAN IV library members, and dis
cussed in this appendix, are not actually 
members of SYS1.FORTLIB. Instead, they 
reside in the link library, to be loaded if 
needed by true library routines at execu
tion time. 

212 

SYSTEM GENERATION OPTIONS 

At system 
makes several 
exact makeup of 
These concern: 

generation time, the user 
choices which determine the 
his FORTRAN IV library. 

BOUNDARY ALIGNMENT OPTION: If this option 
is selected, the -FHCA5JST routine is 
included (as a member of the link library). 
When specification interrupts occur, this 
routine is loaded to attempt correction of 
object program data misalignment. 

EXTENDED ERROR HANDLING OPTION: If this 
option is selected, expanded versions of 
some library routines are included. These 
provide: 

• more precise error messages 
• in some cases, more extensive library 

corrective action and continued 
execution 

• the ability for the user to choose his 
own or the library's corrective action 

The library modules affected by this option 
are listed in Table 9. A user's library 
will include either one set of modules or 
the other. 

Table 9. Routines Affected by Extended 
Error Handling Option 

r--------------------T--------------------, 
I Without I With I 
I Extended I Extended t 
I Error Handling I Error Handling I 
.--------------------+--------------------~ 
I IHCFCOMH I I HCECOMH I 
I IHCUOPT* I IHCUOPT* I 
I IHCDIOSE I IHCEDIOS I 
I IHCFIOSH I IHCEFIOS I 
I IHCFINTH I I HCEFNTH I 
I IHCTRCH*· I I HCETRCH I 
I I I HCERRM. • * I 
I I IHCFOPT I 
.--------------------~--------------------~ 
I .The size differs, although not thel 
I name. I 
I •• With Extended Error Handling, ICHTRCHI 
I becomes an entry point in IHCETRCH. I 
1 ••• Without Extended Error Handling, I 
I IHCERRM is an entry point in IHCTRCH. I L _________________________________________ J 



One other module is affected by system 
aeneration choice: IHCUATBL; the data set 
reference-- table, has both its length and 
some contents determined at this time. 

MODULE SUMMARIES 

I HCFCOMH/IHCECOMH 
This module (with its CSECT extension 
IHCCOMH2) handles the load module 
initialization and termination activi
ties, and sequential and direct access 
input/output operations. It also con
tains switches, addr.esses, and save 
areas (at constant displacements from 
its entry pOint tBCOM.) that are used 
by other library routines. 

IHCNAMEL 
This module directs NAMELIST read/ 
write operations (entry point FRDNLW 
for reads, entry point FWRNLW for 
wri t,es). 

IHCFIOSH/IHCEFIOS 
This module interfaces with the basic 
sequential access methods to do all 
sequential input/output for the load 
module. It is called (at entry point 
FIOCS.) by IHCFCOMH/IHCECOMH and 
I HCNAMEL to perform user-requested 
read/wr i te and devic'e manipulation 
operations, and by other library rou
tines (such as IHCERRM, IHCFDUMP, 
and IHCDBUG) to write error mes
ages, traceback maps, user-requested 
dumps, debug information, etc. 

IHCDIOSE/IHCEDIOS 
This module interfaces with the basic 
direct access methods to do all direct 
access input/output for the load 
module. It is called by the compiler
generated code (at entry point DIOCS#) 
for DEFINE FILE statements, and by 
IHCFCOMH/IHCECOMH (at entry point 
IBCENTRY) for READ, WRITE, and FIND. 

I HCFCV'I'H 
This module does data conversion 
required by other library routines. 
It is called (at entry point ADCON#) 
for formatted and namelist input/ 
output, and for other library opera~ 
tions (such as traceback) that require 
EBCDIC output. 

IHCIBERH 
This module is called by the compiler
generated code (at entry point IBERH#) 
to terminate load module execution due 
to source statement error. 

IHCTRCH 
This module (entry point rHCERRM) lS 
the library error handling routine 
when extended error handling has not 
been specified. It is called by at her 
library routines to direct message 
printing and produce traceback maps. 

IHCETRCH 
This module produces traceback maps 
when the extended error handling faci
lity is present. It can be called by 
the error monitor IHCERRM (at entry 
point IHCTRCH), ur by the compiler
generated code (at entry point ERRTRA) 
at user request. 

IHCERRM 
This module is the error monitor when 
extended error handling has been spec
ified (otherwise, it is an entry point 
in IHCTRCH). It can be called by 
other library routines detecting 
errors (at CSECT name IHCERRM), by 
IHCFCOMH/IHCECOMH for termination 
error summary (entry point IHCERRE), 
and by the compiler-generated code at 
user request (entry point ERRMON) for 
handlinq of user-d~tected errors. 
IHCERRM Jirects its error handling 
activiti~s according to the entries in 
the option' table, IHCUOPT. 

IHCUOP'f 
This module is the option table. In 
addition to ~ preface, it contains one 
entry for each library-defined and 
user-defined error condition.' These 
entries are used by the errur munitor 
IHCERRM to direct its handling of 
errors. 

IHCFOPT 
This module satisfies user requests to 
examine and modify the option table 
IHCUOPT. It is called at entry points 
ERRSAV, ERRSTR, and ERRSET by the 
compiler-generated code. 

IHCFINTH/IHCEFNTH 
This module handles certain program 
interrupts. It is called by the sys
tew interrupt handler at entry point 
ARITH#. 

IHCADJST 
This module, which is included in the 
link library only if the user 
request ed t)ollndary alignment at system 
generation time, is loaded by 
IHCFINTH/IHCEFNTH to attempt correc
tion of data misalignment that has 
caused a specification interrupt. 

Appendix F: Object-Time Library subprograms 213 



I HCSTAE 
This module, which resides in the link 
library, is the STAE abnormal termina
tion processor. When IHCFCOMHI 
IHCECOMH receives control (at entry 
point EXITRTN1) from the system 
because the load module has been sche
duled for abnormal termination, it 
loads IHCSTAE to attempt completion of 
outstanding input/output requests 
before execution ends. 

IHCUATBL 
This module is the unit assignment 
table. It contains information about 
the user's data set references, and is 
used by the library input/output rou
tines in their operations. 

IHCFDVCH 
This module is called by the compiler
generated code (entry point DVCHK) at 
user request to determine if a divide 
checK interrupt occurred. 

I HCFOVER 
This module is called by the compiler
generated code (entry point OVERFL) at 
user request to determine whether or 
not overflow or underflow interrupts 
occurred. 

IHCFSLIT 
This module is called by the compiler
generated code (entry points, SLITE, 
SLITET) at user request to set or test 
private switches ("pseudo-sense 
lights") • 

IHCFEXIT 

214 

This module is called by the compiler
generated code (entry point EXIT) at 
user request to terminate load module 
execution. 

IHCFDUMP 
This module is called by the compiler
generated code (entry {Joints DUt-'P, 
PDUMP) at user request ta produce a 
dump of specified areas of main 
storage. 

IHCDBUG 
This module is called by the compiler
generated code (entry point DEBUG#) to 
direct the production of user
requested debugging information. 

MATHEMATICAL ROUTINES: Information on 
theS;-rr6iary-modur;S-can be found in the 
publication IBM Systeml360 operating Sys
tem: FORTRAN IV Library--Mathematical and 
Service SUbprograms, Order No. GC28-6818. 

LIBRARY INTERRELATIONSHIPS 

It is helpful to recognize that there is 
not always a one-to-one relationship 
between library functions and library 
modules. Some functions require the execu
tion of several modules, and, conversely, 
some modules are involved with more than 
one function. 

Certain library modules are called pri
marily by the compiler-generated code, but 
a large number are called only, by other 
library modules or by the system. This 
relationship is illustrated in Figure 16. 

In interfacing with each other, with the 
system and with the compiler-generated 
code, library modules use ~2~§~~ndard call
ing and register-saving procedures. 



n 
C 
o 
M 
P 
I 

L 
E 
R 

G 
E 
N 
E 
R 
A 

T 

E 
D 

o 
B 
J 
E 
C 
T 

I LibiaiY fOutines 
entered initi;o'ly 

from compiler-

~ 
-=e:ra~ code _ 

IHCDBUG 

! HCFDU~~P 

IHCFDVCH 

IHCFExlT 

IHCFOPT 

IHCFOVER 

IHCFSLIT 

IHCIBERI-i 

IHCNAME L 

Library routines 

entered only 

from other 

library routines 

or the system 

!HCADJST 

IHCFCVTH 

IHCFINTHI 

IHCEFNTH 

IHCFIOSHI 

IHCEFIOS 

IHCSTAE 

IHCTRCH 

IHCUATBL 

IHCUOPT 

n 

o 
P 
E 
R 
A 

T 
I 
N 
G 

s 
y 

S 
T 
E 
M 

C 
o 
D 
E 

Library routines that fall Into both 

categorle'S. being entered sometimes 

from the compiler-generated code. and 

sometim8'S from other library routines 

or the operating system 

IHCFCOMH/IHCECOMH 

I HCDIOSEIIHCE DIOS 
IHCETRCH u IHCERRM u Mathematical routines 

Figure 16. Calling Paths for Library Routines 

The library is responsible for the loari 
module's initialization activities. Every 
compiler-generated main program begins with 
a branch to the IBFINT section of IHCFCOMH/ 
IHCECOMH. This libra~y routine performs 
the following initialization procedure: 

• Saves the load module entry point In 
its location MAINEP, and the main pro
gram's save area pointer in its loca
tion REG13. 

• Issues a ~PIE macro instruction speci
fying libr~ry control tor program 
interrurt~; 9, 11, 12, 13, 15, and, if 
boundary dlignment was ~electpd at sys
tem generation time, 6. 

Issue:; d ~~Tl\E m.wro in:.;truction speci
fying library control if the system 
schedul es thp load mOrl \lIe for abnorwa I 
terminat ion • 

calls IHCFIO:,H/IHCEFIOS to open the 
object error llni t. 

Appendix F: Object-Time Library Subprograms 215 



control is then returned to the main pro
gram, which begins its processing. 

INPUT/OUTPUT OPERATIONS 

Processing FORTRAN input/output requests 
is mainly the responsibility of the 
library. For each request, the compiler 
sets up a call(s) to the appropriate entry 
point in the appropriate library routine. 
For NAMELIST READ/WRITE, the call is to 
IHCNAMEL, which then calls IHCFIOSHI 
IHCEFIOS and IHCFCVTH. For DEFINE FILE, 
the call is to IHCDIOSE/IHCEDIOS. For all 
other operations, the call is to IHCFCOMHI 
IHCECOMH. If the operation is sequential 
READ/WRITE, the IHCFCOMH/IHCECOMH routine 

216 

calls IHCFIOSH/IHCEFIOS (and also I HCFCVTH 
if format control is present). If the 
operation is· REWIND, BACKSPACE, or ENDFILE, 
the IHCFCOMH/IHCECOMH routine calls 
IHCFIOSH/IHCEFIOS. If the operation is 
direct access READ, WRITE, or FIND, routine 
IHCFCOMH/IHCECOMH calls IHCDIOSE/IHCEDIOS 
(and IHCFCVTH if format control is pre
sent). If the operation is STOP with 
message, or PAUSE, routine IHCFCOMH/ 
IHCECOMH calls the supervisor. This flow 
is outlined in Figure 17. For each direct 
access or sequential read/write request, 
the compiler-generated code issues multiple 
calls to IHCFCOMHlIHCECOMH: an initial 
call, one call for each item (either vari
able or array) in the I/O list, and a final 
call. Thus, the FORTRAN statement READ 
(23,lOO)Z,Y,X results in five consecutive 
calls to IHCFCOMHlIHCECOMH. 



DEFINE 
FILE 

IHCDIOSEI 
I HCE DIOS saves 
DEFINE FILE data; 
submits i/O request 
to data management 

, 

access 
READ, 
WRITE, 
FIND 

"'---

load module 

operating 
system 

Basic Direct 
Access Methods 

COMPILER·GENERATED OBJECT CODE 

all other 
'10 ieQuasts 

IHCFCOMHI 
IHCECOMH 
interprets 
request 

write to 
operator 
(STOP and 
PAUSE) 

iHCFCvTH 
converts 
and moves 
user's I/O 
data 

sequential 
READ, WRITE, 
BACKSPACE, 
REWIND, 
ENDF I LE 

NAME LIST 
READ/WRITE 

IHCNAME L 
Interprets 
request 

I HCF IOSHII HCE FIOS 
submits request 
to data fn3n3gemcnt 

- - --, 
- - - - - - --" 

I 
- - ____ - - - -I I 

I I 
I 1 

Supervisor 
Basic Sequential 
Access Methods 

Figure 17. control Flow for Input/Output Operations 
-If Form.t is present 

- -For pre-formatting new data sets before writing user's data 

Appendix', Objeot-Time Library Subproqrama 217 



DEFINE FILE 

The compiler-generated code branches 
directly to IHCDIOSE/IHCEDIOS at entry 
point DIOCS#. This section takes the 
address of the parameter list containing 
the data set characteristics supplied by 
the user and places it in the appropriate 
unit assignment table (IHCUATBL) entry. 
There may be more than one data set defined 
per DEFINE FILE statement, in which case 
DIOCS# loops through the definitions, plac
ing the parameter list addresses into the 
table. 

If a data set has been previously 
defined, the new definition is ignored. If 
the data set requested is sequential rather 
than direct, IHCERRM is called with error 
condition 235 indicated. If the data set 
is the object error unit, IHCERRM is called 
with error 234 indicated. 

DIOCS# also places the address of the 
section IHCDIOSE/IHCEDIOS that handles 
actual reads and writes--IBCENTRY--into a 
fixed location in IHCFCOMH/IHCECOMH, in 
order to establish addressability for later 
branching. If the user fails to place his 
DEFINE FILE statement ahead of his asso
ciated READ or WRITE statement, this 
address will not be available, and an error 
condition will occur. 

DIOCS# returns to the compiler-generated 
code. 

SEQUENTIAL READ/WRITE WITHOUT FORMAT 

Initial Call 

The initial call is to IHCFCOMH/ 
IHCECOMH, which saves END= and ERR= 
addresses, if they are present, in its 
locations ENDFILE and IOERROR, respective
ly, and then branches to IHCFIOSH/IHCEFIOS, 
passing along the data set reference 
number. 

IHCFIOSH/IHCEFIOS uses this data set 
reference number to consult the correspond
ing entry in the table IHCUATBL. (This 
table is explained in Figures 18 and 19.) 
The initialization action taken by 
IHCFIOSH/IHCEFIOS depends on the nature of 
the previous operation performed on this 
data set. The previous operation possibi
lities are: 

• no previous operation 

• previous operation was read or write 

218 

• previous operation was backspace 

• previous operation was write end of 
file 

• previous operation was rewind 

NO PREVIOUS OPERATION: IHCFIOSH/IHCEFIOS 
mus~create a unit block, which will con
tain the DCB, DECBs, and other library 
information to be used in contrOlling 
operations. Space for the unit block is 
acquired with a GETMAIN, and a pointer to 
it is stored in the IHCUATBL entry. (The 
contents of the unit block are outlined in 
Figure 20.) 

IHCFIOSH/IHCEFIOS inserts certain stan
dard values into the DCB in the unit block. 
It do~s this by moving in a copy of a 
nonfupctioning skeleton DCB, which speci
fies DSORG as PS, MACRF as (R,W), DDNAME as 
FTnnF001, and gives addresses in IHCFIOSHI 
IHCEFIOS for SYNAD and EODAD, and for 
EXLST, which specifies the OPEN exit rou
tine. IHCEFIOSH/IHCEFIOS puts· the data set 
reference number into the nn field of the 
DDNAME. This establishes for' the system 
the connection between this DCB and the 
user's DO card, which must have the same 
name on it. 

IHCFIOSH/IHCEFIOS now issues an OPEN 
macro instruction, which merges the user's 
DO information, and label information if 
the data set already exists. When its open 
exit routine (IHCOCBXE) gains control, 
IHCFIOSH/IHCEFIOS examines the DCB. If 
fields are zero, indicating the user has 
omitted corresponding DD parameters, 
IHCFIOSH/IHCEFIOS inserts library default 
val ues.· (These defa ul t values are stored 
in the IHCUATBL entry.) 

After completion of the OPEN macro, 
IHCFIOSH/IHCEFIOS places the buffer 
address(es) in the housekeeping section of 
the unit block, and also in the DECB(s). 
It also puts the DCB address into the 
DECB(s). If this is a read operation, it 
sets the first byte of the type of inputl 
output request field in the DECB(s) to 
X'80', indicating the reads should be of 
blocksize; if this is a write operation, it 
sets this byte to x'OO', indicating the 
writes should be of logical record length. 

If the initialization is for a read 
operation, IHCFIOSH/IHCEFIOS now issues a 
READ macro, with a CHECK, filling the 
buffer. If double buffering is in effect, 
it also issues a second READ macro, to 
begin filling the second Duffer. (This 
READ is not checked untilIHCFIOSH/IHCEFIOS 
is entered the next time for this data 
set.) Control is returned to IHCFCOMHI 
IHCECOMH, along with address and length of 
the data that was read • 



If the initialization is for a write 
operation, IHCFIOS?JIHCEFIOS simply teturns 
to IHCFCOMH/IHCECOMH. passing the address 
and length of the buffer. (The actual 
write operation will not take place until 
IHCFCOMH/IHCECOMH fills the buffer.) 

PREVIOUS OPERATION--REAO OR WRITE: In this 
case~ the-data-set-Is-already-open and ~ne 
unit block in existence. The DECB is set 
to indicate the proper action (either tead 
or write). If this is a write request, 
control is returned to IHCFCOMH/IHCECOMH 
with buffer address ana length. If it is a 
read request, the READ macru is issued to 
fill the buffer, and the address and length 
of the data that was read is passed back to 
IHCFCOMH/IHCECOMH. 

PREVIOUS OPERATION--B~~KSPAC~: The opera
tion is the same ~s fo~ "Previous 
Operation--Read or Write" de~cribetl above, 
except that priming of buffer(s) may be 
needed. 

PREVIOUS OPERATION--ENO FILE: IHCFIOSH/ 
IHCEFIOS must first close the existing dat'a 
set, and process a new one. To process a 
new data set, IHCFIOSH/IHCEFIOS increments 
th~ sequence numher of the DDNAME field in 
the old DCB; for example, FT14FOOl is 
changed to FT14F002. Th€ OPEN procedure 
described above under "NO Previous Opera
tion" is then followed. (The libra:ry 
assumes the user has a FTnnF002 DO card for 
this new data set.) The usual read Or 
write procedure is used. 

PREVIOUS OPERATION--REWIND~ The data set 
has been-closed;-and-mustbe reoppned. The 
procedure is the. same as that dpscribed 
under "No Previous Op~ration," beqinning 
after thp creating of the unit block. 

In all of the above cases, IHCFIOSR/ 
IHCEFIOS returns to IHCFCOMH/IHCECOMH, 
which saves the buffer pointer and length, 
and then returns to the compiler-generated 
code. 

Second Call 

The compiler-generated code calls 
IHCFCOMH/IHCECOMH, passing information 
about the first item in the I/O list (its 
address, type, whether it is a variable Or 
array, etc.). If this is a read request 
for a variable, IHCFCOMH/IHCECOMH takes the 
proper number of bytes from the buffer and 
moves them to the indicated address. For 
an array, IHCFCOMH/IHCECOMH repeats the 
process, fillin9 the array element by ele
ment. If this is a write request for a 
variable, IHCFCOMH/IHCECOMH takes the item 
from the indicated address and moves it 

intb the buffer. For an array, IHCFCOMH/ 
lliCEcot-.tH I .. ~ped·"C~ the process·, einptying the 
array element by element. After adjusting 
it~ buffer pbinter so it pOints to either 
ihe next data item or the hext ~mpty space, 
IHCFCOMH/IHCECOMH returns to the compiler
generat.ed code. 

The procedure is the sarue·as for the 
firs~ list item, with these exceptions. 
When IHCFCOMH/IHCECOMH is processing a read 
re~ues~ ahd finds it has emptied the buff
er, it calls IHCFIOSH/~HCEFIOS 'to issue 
another READ mccro and refill it. If 
dOUble buffering is in effect, IHCFtOSHI 
IHCEFIOS passes the address of the other 
bnff~r (after checking the READ macro for 
that buffer', and then iss.ues a READ macro 
instruction for the buffer just emptied, 
always keeping bne READ ahead. 

When I HCFCOMH" I HCE'COMH' is processing a 
write request and finds it has filled the 
buffer, it calls IHCFIOSH/IHCEFIOS to issue 
the act-ual WRITE macro. If double bufie'r
ing is in effect, IHCFIOSR/IHCEFlos passes 
back the address of the other buffer. 

Final Call 

Fbr a ~ead operation, the main pro9ram 
passes control to IHCFCOMR/IHCECOMH which 
passps control on to IHCFIOSH/IHCEFIOS. If 
IHCFIOSH/IHCEFIOS finds that, for this data 
set, physical records are larger than log
ical records, it simply returns to 
IHCFCOMH/IHCFCOMH, which returns to the 
compiler-generated Object code. If physi
cal records are shorter than logical rec
ordS, IHCFIOSH/IHCEFIOS issu~s READ macros 
until it reaches the end of the logical 
record. This positions the devi~e at the 
beginning of the rtext logical 'record, in 
preparation for subsequent FO~TRAN RFAD 
requests for this'unit. 

For a wri te op~ration, IHCFCOMH/IHCECOlflH 
gives dontrol to IHCFIOSH/IHCEFIOS. If the 
data set is unblocked, or if it is blocked 
and the buffer is full, IHCFIOSH/IHCEFlbS 
issues a final WRITE maer'o. 

System Block Modification and Reference 

While performing its fUnctions, 
IHCFIOSH/IHCEFIOS may modIfy certain fields 
of the current DCB: 

Appendix F: Object-Time Library subprograms 219 



DCBBLKSI--IHCFIOSH/IHCEFIOS changes this 
field before writing out a short 
block when RECFM=FB. IHCFIOSH/ 
IHCEFIOS restores it after issu
ing the corresponding CHECK 
macro. 

DCBOFLGS--before issuing a CLOSE (TYPE=T) 
macro to implement an ENDFILE 
request, IHCFIOSH/IHCEFIOS turns 
on the high order bit to make 
this look like an output data 
set. 

IHrFIOSH/IHCEFIOS also modifies some 
fields of the DECBes), in addition to its 
initialization: 

DE~TYPE (byte l)--for reads, set to indi
cate a read of blocksize: for 
writes, set to indicate a write 
of logical record size. 

DECTiPE (byte 2)--set to indicate read or 
write when the previous opera
tion for this data set was the 
opposite. 

DECLNGTH--filled in when a U-type record is 
to be wr i tt.en. 

In addition to referring to the DCB and 
DECB(s), IHCFIOSH/IHCEFIOS also examines 
tt;e CSW field in the Input/output Block 
(lOB) to get the 'r"t-"'sidual count. (The DECB 
points to the lOB.) By subtract i ng the 
residual count from the DCB blocksize, 
IHCFIOSH/IHCEFIOS knows the actual length 
ot the d"lta read into the buffer. 

During their processing at unformatted 
s€>quent ial reads and writes, IHCFIOSH/ 
IHCFFIOS and IHCFCOMH/IHCECOMH check at 
varjous times for a number of error condi
tions. IHCF'IOSH/IHCEFIOS checks for the 
following error conditions: the user's data 
set reference number is out of IHCUATBL 
range (error 220); he failed to supply a DD 
card for the requested data set (error 219); 
and he specified anything other than Vari
able Spanned (VS) records (error 214); 
IHCFCOMH/IHC£COMH checks each I/O list item 
to see if it exceeds buffer size (error 
213). If one cf these errors is detected, 
control is passed to IHCERRM. 

If extended error handling is in effect, 
control returns from IHCERRM to its caller, 
which does the following: 

220 

• conditions 219 or 220 IHCEFIOS 
returns to its original caller at the 
error displacement. (The error displa
cement is 2 bytes beyond the address 
originally passed to it in register 0; 
the normal return point is 6 bytes 
beyond the address originally passed in 
register 0.) 

• condition 214 if user-supplied 
corrective action is indicated or if 
the operation is a read, IHCEFIOS 
ignores the input/output request and 
returns to the error displacen~nt. 

Otherwise, it changes the record format 
to VS and continues execution. 

• condition 213 -- IHCECOMH ignores the 
list item request, and any further list 
item requests for this read or write. 

If an end-ot-file is detected when 
IHCFIOSH/IHCEFIOS issues a CHECK macro, its 
EODAD routine gains control. It branches 
to the user's END= address if one exists. 
If not, it branches to IHCERRM. Without 
extended error handling, this is a terminal 
error. with extended error handling, con
trol returns to IHCEFIOS after error mes
sage and traceback printing, and possible 
user corrective action. IHCEFIOS T-closes 
the data set, and returns to its original 
caller at the error displacement. 

If an input/output error is 
when IHCFI0SH/IHCEFIOS issues 

detected 
a CHECK 

macro, its SYNAD routine gains control. It 
issues a GETMAIN for extra space, and then 
issues a SYNADAF macro, which puts relevant 
information into the area. (If extended 
error handling exists, IHCEFIOS has the 
associated data set reference number con
verted and places it into the error 
message--218.) IHCFIOSH/IHCEFIOS next asks 
data management to accept the data in 
error, and restart the lOB chain. IHCERRM 
is then called. Without extended error 
handling, the error message and traceback 
are printed, and then IHCERR~ branches to 
the user's ERR= address if there is one, 
and to the IBEXIT section of IHCFCOMH if 
there was not. With extended error handl
ing, IHCERRM goes to the user's option 
table exit routine if there is one and, in 
any case, prints out the error message and 
traceback. Then it branches to the user's 
ERR= address, if there is one. If not, it 
returns to IHCEFIOS, which continues pro
cessing if the user supplied his own corre
ctive action: if not, IHCEFIOS returns to 
the error displacement vf the routine that 
originally called it. 



SEQUENTIAL READ/WRITE WITH FORMAT 

These operations are the same as for 
sequential read/write without format, 
except IHCFCOMH/IHCECOMH must scan and 
interpret the associated format specifica
tion, and control the conversion and move
ment of list items accordingly. 

OPENING SECTION: Upon return from the 
initialization section of IHCFIOSH/ 
IHCEFIOS, IHCFCOMH/IHCECOMH begins examin
ing the format specification, the address 
of which is passed as an argument in the 
initial branch from the compiler-generated 
code. The format sppcification may be one 
of two types: one declared in a FORMAT 
statement in the FORTRAN source program; or 
an array that the user has filled in with 
format information during execution (often 
referred to as object-time format specifi
cation). In the former case, the compiler 
has already translated the statement into 
an internal code. In the latter, the 
format information exists in its EBCDIC 
form, just as it would in a FORMAT 
statement. 

In the case of an object-time format 
specification, IHCFCOMH/IHCECOMH must pick 
up the array contents and process them so 
they are in the same form as a format 
specification processed by the compiler. 
IHCFCOMH/IHCECOMH does this using the TRT 
instruction and its table TRTSTB. 

The translated format codes, 
meanings to IHCFCOMH/IHCECOMH, 
in Table 10. 

and thpir 
are listprj 

In both cases, IHCFCOMH/IHCECOMH now 
begins scanning the format information. It 
reads it -- saving the control information 
-- until it finds the first conversion code 
(or the end of the FORMAT statement). Then 
it exits to the compiler-generated code. 

LIST ITEM CALLS FOR READ REQ!:!ES:!:: When 
IHC~COMH/ is entered for the first list 
item, it determines from th~ conversion 
code which section of the conversion rou
tine IHCFCVTH to call. It passes infor~a
tion from the format specification, (such 
as scale and width), information about the 
list item (such as its address)~ and buffer 
address and length. IHCFCVTH, and its 
associated subroutines, do both the conver
sion and the moving of the data from buffer 
to list item location or vice versa. 

In general, after a conversion routine 
has processed a list item, IHCFCOMHI 
IHCECOMH determines whether or not that 
routine can be applied to the next list 
variable or array element (if an array is 
being processed). IHCFCOMHlIHCECOMH 
examines a field count in the format speci
fication that indicates the number of times 
a particular conversion code is to be 
applied to successive list variables or 
elements of an array. 

If the conversion code is to be repeated 
and if the previous list item was a vari
able, IHCFCOMH/IHCECOMH returns control to 
the main program. The main program again 
branches to IHCFCOMH/IHCECOMH and passes, 
as an argument, the main storage address 
assigned to thp next list itpm. 

Appendix F: Object-Time Library Subprograms 221 



Table 10. Format. Code Translations and Their Meanings (Part 1 of 2) 
r------T-----------T--------------T----------T------------------------------------------, 
\ \Code After I I I I 
\ \Compiler orl I I I 
\ \ I HCFCOMHI \ I \ I 
I Source \ I HCECOMH I \ t I 
I FORMAT1Translation\ 1 I I 

Icode I(in hex) IDescription I Type ICorresponding Action by IHCFCOMH/IHCECOMH I 
~------t-----------t--------------+----------+------------------------------------------~ 
I beginning of statement .1 control I Save location for possible repetition of 
1 I I Ithe format codes: clear counters. 
I I I I 
In( 04n Igroup count tcont~ol Isave n and location of left parenthesis 
I (n=l-byte I Ifor possible repetition of the format 
I value of I I codes in the group. 
I repeat count~ I I 
I set to 1 if no I I 
I repeat count) I I 
I I I 
la 06a field count control ISave! for repetition of format code that 
I (a=l-byte I follo"s. 
I value of I 
I I repeat count) I 
I I , 
InP 108. scaling factor control ISave ~ for use by F, E, and.O conversions. 
I I I 
Tn 112n column reset control IReset current position within record 

I (n=l-byte IDth column qr byte. I value) l 
nX 118n skip or blank control I Skip U characters of an input record, or 

I (n=i-byte linsert D blanks in an output record. 
, value) 1 I 
I I I 

'text'11Aw literal data I control IMove ~ characters from an input record to 
or nH I I I the FORMAT statement, or ~ characters from 

I I Ithe FORMAT statement to an output record. 

~------~-----------~--------------~----------~------------------------------------------~ 
I~~: • is a l-byte value of n, if n was positive: if negative, it is the value plusl 
I 128(decimal). I 
I w = i-byte value of field width. I 
I d = 1-byte value of number of digits after the decimal point. I l ________________________________________________________________________ ~--------------J 

222 



Table 10. Format Code Translations and Their Meanings (Part 2 of 2) 

r------T-~---------T-----~--------T-----~----T----------------------------------~-------l 
! Icode After iii I 

1 Compiler or 1 I I I 
1 IIHCFCOMH/ I I I I 
ISourcelIHCECOMH I I I . 
I FORMAT I Translation I I ! I 
1 Code I (in hex) I DfC'script ion I Type 1 Correspondinq Act ion by IHCFCOr-'H/ I HcEC()MH ; 
~------+-----------+--------------+----------+------------------------------------------i 
IF-w.n iOA w.diI-·-convers~on Iconvers~onIIHcFcOMH/IHCECOMH Pd~~:,es the values of ~, 1 
IEw.d 10C w.d IE-convers~on Iconvers~onl~ and E --plus information about thp list 1 

IDw.d 10E w.d ID-converslon IconverS10nlJtem and the buffer-- to the appropriate I 
IIw 110 w II-conVersion Iconversionlsection of IHCPCVTH fnr conversion. I 
!Aw 114 w lA-conversion jconversionl i 
IGw.d 120 w.d IG-conversion Iconversionl 
,LW j16 w IL-conversion Iconversion! 
tZw 124 w IZ-conversion Iconversionl 
I t I ! I 
Il 11C Igroup end Icontrol ITest group count. If it is greatf'r thanl 
'I I I 11, repeat format cories in qroup; otfl('r-I 
'I I I ,wise, continue to procf'ss FORMAT statel1lPnt 1 
1 1 I I ,from current rosition. I 

1 I I I I I 'I lIE 'record f"nd I control I InpUt or output one record us inq IHCFIOSH/ I 
I I ill IHCEFIOS/ and READ/WRITE rnacrnl 
I 1 1 1 I instruction. I 
1 I I I I ! 
1 1 If'nn of Icontrol /If no I/O list items remain to he I 
1 1 I ~~tdtf'mpnl I I transmitted, return control to load module I 
I I I I Ito link to the closing section; if 1/01 
" I I Ilist items remain, n'cHl or write nnpl 
'I I I I record using input/output inU'rface rindl 
I I I I I the READ/WRI'I'E macro i n~; t r Ilcti on. Repeat I 
I I I I Iformat code~; from lost pc1rpnthf·~)is·. I r------L--- --------. _1.-_ -- -- -- - - ----~_ - _______ - ~ __________________________________________ ~ 

I~_~~~: * is it l-byt€' vidllP of !!, it !! W<1,; positive; if nf'gdtivp, it i" t_hf' value plusl 
I 128(decimaU. I 
I w ~ I-byte value of field width. I 
I d = I-byt~ Vo lup of numhf'r of digi t~; after thp decimal point. I 
l _____________________________________________________ --------------------- _____________ J 

If the conversion code is to bf> repE='ated 
and if an array is bf>inq processed, 
IHCFCOMH/IHCECOMH computes the main storage 
addrf>ss of the next elemf"nt in the array. 
The conversion routine that processed the 
previous element is then qiven control. 
This procedure is repeated until either all 
the array elements associated with a spe
cific conversion code are processed or end 
of logical record is detected (error 212). 
In the latter case, control is passed to 
IHCERRM. 

If the conversion codf> is not to be 
repeated, control is passed to the scan 
portion of IHCFCOMH/IHCECOMH to continue 
the scan of the format specification. If 
the scan portion determines that a group of 
conversion codes is to be repeated, the 
conversion routines corresponding to those 
codes are applied to the next portion of 
the input data. This procedure is repeated 

until either thf> qroup count is exhausted 
or thp input drtta for thf> READ statement is 
f"xhausted. 

If a group of convprsion codes is not to 
be repeated and it the end of the format 
specification is not encountf>red, the next 
format code is obtained. For a control 
type code, control is passed to the asso
ciated control routine to perform the indi
cated operation. For a conversion type 
code, control is returned to the compiler
generated code if the previous list item 
was a variable. The compiler-generated 
code again branches to IHCFCOMH/IHCECOMH 
and passes, uS an argument, the main 
storage address assigned to the next list 
item. Control is then passed to the conv
ersion routine associated with the new 
conversion code. The conversion routine 
then processes the data for this list item. 
If the data that was just converted was 

Appendix F: Object-Time Library Subprograms 223 



placed into an element of an array and if 
the entire array has not been filled, 
IHCFCOMH/IHCECOMH computes the main storage 
address of the next element in the array 
and passes control to the conversion rou
tine associated with the new conversion 
code. The conversion routine then pro
cesses the data for this array element. 

If, in the midst of its processing, 
·IHCFCOMH/IHCECOMH finds that it has emptied 
the buffer it calls IHCFIOSH/IHCEFIOS to 
issue another READ macro instruction. 

If the scan portion encounters the end 
at th~ format specification and if all the 
list items are s~tisfiedf control returns 
to th~ next sequential instruction within 
the compiler-generated code. This instruc
tion (part of the calling sequence to 
IHCFcnMIVIHcECOMH) branches to the closing 
!H'C t luna I f all the 1 ist items are not 
sdti;itieri, control is passed to the inputl 
outl->ut interface to read (via the READ 
macro instruction) the next input record. 

LIST ITEM CALL~; FOR WRITE REQUEST: 
IHCFCOMH/IHCECOMH processing is similar to 
that for a read request. The main dif
ference is that the conversion routines 
obtain data from the main storage addresses 
assiqned to the list items rather than from 
an input buffer. The converted data is 
them transferred to an output huf fer. If 
all the list items have not been converted 
and transferred prior to the encounter of 
the elld of the format specification, con
trol is passed to the IHCFIOSH/IHCEFIOS 
rout 1 ne. IHCFIOSH/IHCEFIOS wr i tes (via 
the Wid TE macro ins trllction) the contents 
of Uw current output buffer onto the out
put J ,1 t a set. 

Formattinq control tor the remaining 
li~;t items is then resumpri at the group 
count of the left parenthpsis corp'sponding 
to the last preceding right pdrpnthesis, 
or, if none exists, from thp fir~t left 
parpnt_hesis. 

If IHC'FCOMH/ItlCECOMH rletects drl error in 
the format specification (condition 211), 
it calls IHCERRM. Standard corrective 
action in the case of extended error handl
ing is to treat the invalid character as a 
terminal right parenthesis and continue 
execution. 

CLOSING SECTION: If the operation is a 
read- request;- the closing section simply 
returns control to the main program to 
continue execution. If the operation is a 
write requiring a format, the closinq sec
tion branches to the IHCFIOSH/IHCEFIOS 
routine. IHCFIOSH/IHCEFIOS writes (via the 
WRITE macro instruction) the contents of 
the current input/output buffer (the 
final record onto the output data set. 

224 

IHCFIOSH/IHCEFIOS then returns control to 
the closing section. The closing section, 
in turn, returns control to the compiler
generated code. 

DIRECT ACCESS READ/WRITE WITHOUT FORMAT 

Unformatted reading and writing for 
direct access data sets is handled by 
IHCFCOMH/IHCECOMH and IHCDIOSE/IHCEDIOS. 
The procedure is similar to that for 
sequential data sets. The compiler
generated Object code calls IHCFCOMHI 
IHCECOMH once for initialization, once for 
closing, and once in between for each item 
(variable or array) in the I/O list. 
IHCFCOMH/IHCECOMH calls IHCDIOSElIHCEDIOS 
once for initialization, once for closing 
(if it is a write request), and as many 
times in between as the input/output data 
requires. The actions of IHCFCOMH/IHCECOMH 
are identical to those for sequential 
unformatted read and write operations. The 
only exception is that IHCDIOSH/IHCEDIOS is 
called in place' of IHCFIOSH/IHCEFIOS. 

Initialization Branch 

When IHCDIOSE/IHCEDIOS is given control, 
it checks the entry in IHCUATBL correspond
ing to the indicated data set reference 
number to see if the data set has been 
opened. If not, IHCDIOSE/IHCEDIOS con
structs a unit block for that data set in 
an area acquired by a GETMAIN, and places a 
flointer to it in the IHClJATBL entry. (This 
Ilnit block, which is slightly different 
from ones created by IHCFIOSH/IHCEFIOS, is 
diagrammed in Figur p 21.) 

IHCDIOSE/IHCEDIO~ next reads the Job 
File Control Block (JFCB) via a RDJFCB 
macro instruction. The appropriate fields 
in the JFCB are examined to determine if 
the user included a request for track 
overflow and a BUFNO subparameter in his DD 
statement for this data set. If he did, 
they are inserted into the DCB skeleton in 
the unit block. If BUFNO was not included 
or was other than 1 or 2, a value of 2 is 
inserted in the DCB skeleton. IHCDIOSEI 
IHCEDIOS next examines the data set dispo
sition field of the JCFB. If the data set 
is new and the requested operation is a 
write, IHCDIOSElIHCEDIOS must first format 
the data set before it can do the actual 
writing. 

FORMATTING A NEW DATA SET: IHCDIOSEI 
IHCEDIOS modifies---the-~Fca--so that the 
disposition is old, and fills in the fol
lowing fields in the DCB in the unit block: 



£CB2:i~!9 
BUFNO 
NCP 
DSORG 
MACR 
OPTCD 

DDNAME 

se~~ing_Qf_!i~!~Q~for~-2~~~ 
X' 02' Two buffers 
X'02' Two DECBs 
X:40= Set for DSORG=PS 
X'0020' Normal BSAM WRITE 
Set to X'OO' or X'20' 
depending upon whether 
chained scheduling was not 
or was specified on the DD 
card as obtained from the 
JFCB. 
Set to FTnnF001, where Inn' 
is the DSRN. 

Then an OPEN macro instruction, using BSAM, 
is issued (TYPE=J). The record length 
field, buffer address field, and DCB 
addr.ess field are filled in the DECB's. 
Then IHCDIOSE/IHCEDIOS issues sufficient 
WRITE macro instructions for fixed 
llIib I f)C kt-~d blank recor.ns to fonnat thf> 
track (s) • Record length and number speci-· 
fications are taken from the DEFINE FILE 
rarametpr list pointed to by IHCUATEL. 

The TRBAI.. field is llsed during B~;AM 
wflting to calculatf> whether there is 
enough room on the track for additional 
records after it has written the required 
numher of fixed-length records. If the 
track is not full, data management does not 
create an RO record ann th" as utilities 
cannot proces~:; thp data SE't. Therefore, if 
the track is not full, the library writes 
as many extra records as necessary until 
the track is complete. 

The data set is then closed. The DCB is 
modified in the following way in order that 
it may be re-opened for EDAM and the actual 
writing. 

£~g_Ii~19 
NCP 
DSORG 
MACR 

MACR .. 
OPTCD 

New S~~~!~g_!~E BD~i-Q~~~ 
X'OO' Reset for BDAM 
X'02' DSORG=DA 

X' 28' 
X'Gl' 

EDAM update 
and check 
EDAM WRITE by ID 
BDAM rplativp 
block addrE'ss. 

The procedure then is the same as opening 
an old data set (see below). 

OPENING A DATA SET WHOSE DISPOSITION IS 
OL5:--The data set is-opened~or-BDAM~-Wrth 
the UPDAT option. In its open exit rou
tine, IHCDIOSE/IHCEDIOS supplies default 
values (from the IHCUATBL entry) for those 
omitted by the user. After the open, 
IHCDIOSE/IHCEDIOS inserts into the DECB's 
the addressees) of the buffer(s) obtained 
during control block opening. 

After doing this, or if the data set is 
already opened, IHCDIOSE/IHCEDIOS performs 
the following actions: 

• ~~!~~: Upon initial branch, IHCDIOSE/ 
IHCEDIOS does no writing at this ti~e, 
but only fills the bllffer witt. zpros 
and passes buffer adjress and buffer 
length back to IHCFCOMH/IHCECOMH so the 
latter may begin moving in the list 
i terns. 

• Read: Upon initiAl branch, IHCr~\I()~;E/ 
IHCEDIOS gpts t hp re la ti V€' record numb
er requested by the use{, which has 
been passed along by IHCFCOMH/IHCECOMH. 
IHCDIOSE/IHCEDIO~ examinps thp buffer 
to see if the record is already pre
sent. (This will be th( ca~iP if thf> 
user oreviouslv TPf1IlPC;tPr1 rl FIND fr,y 

this - record: ) 'I f nul plese nt , 
IHCDIOSE/IHCEDIOS issues a READ macr' 
and, in ei ther case issues a CHECY_ 

After updating the associated varla~]~ 
in the parameter Ijst to POlllt tu f)-V 

record following thp nne just r~ad, 
IHCDIOSE/IHCEDIOS rf'turns to IHCFCOMfU 
IHCECOMH, passinq the buffer addrpss 
and length. 

WRITE OPERATION: When IHCFCOMH/IHCECOMH 
has-iTlled-the-Fiuffer with list items, il 
hranches to IHCDIOSE/IHCEDIOS indicating a 
write request. IHCDI00E/IHCE[lIOS obtains 
the relative record number from the para
meter list passed along by IHCFCOMH/ 
IHCECOMH, and writes the record out via a 
WRITE macro instruction. It updates the 
associated variahlp in thp p~rameter ligt 
to point to ttlf' rpcord followinq the one 
just written. If ~;inqle bufferinq is beinq 
used, it che(~ks the write and ret.urns to 
IHCFCOMH/IHCECOMB. If double buffering is 
bei ng used, L t post pones thp check until 
its next call, anrl returns the address of 
the other buffer to IHCFCOMH/IHCECOMH. 

READ OPERATION: IHCDIOSE/IHCEDIOS handles 
any further read requests from IHCFCOMH/ 
IHCECOMH exactly as for the first (without 
checking for the data set being open). 

Final Branch 

WRITE OPERATION: 
IHCDIOSE/IHCEDIOS 
buffer. 

IHCFCOMH/IHCECOMH calls 
to write out the final 

READ OPERATION: IHCFCOMH/IHCECOMH 
to the compiler-generated code 
calling IHCDIOSE/IHCEDIOS. 

returns 
without 

Appendix F: Object-Time Library Subprograms 225 



If IHCDIOSElIHCEDIOS detects an inputl 
output error condition, it performs in a 
mannpr similar to IHCFIOSH/IHCEFIOS by 
issuing a SYNADAF macro, using the resul
tant information to build a 218 error 
message, and passing control to IHCERRM. 

IHCDIOSE/IHCEDIOS 
one time or another 
conditions: 

will also identify at 
the following error 

231--the data set indicated by the 
caller is sequential rather than 
direct. 

232--the record number requested is 
out of data set range. 

233--the indicated record length 
exceeds 32K-1. 

236--the read requested is for an 
uncreated data set. 

237--the specified record length is 
incorrect. 

In all these cases, IHCDIOSE/IHCEDIOS sets 
up the er~or message data and passes con
trol to IHCERRM. 

DIRECT ACCESS READ/WRITE WITH FORMAT 

Requests for direct access reads and 
writes with format are handled by IHCFCOMH/ 
IHCECOMH, with the assistance of IHCDIOSEI 
IHCEDIOS and IHCFCVTH. The actions of 
IHCDIOSE/IHCEDIOS are exactly the same as 
for unformatted direct access reads and 
writes. The actions qf IHCFCOMH/IHCECOMH 
are exactly the same as for sequential read 
and write requests with format, except it 
calls IHCOIOSElIHCEDIOS instead of 
IHCFIOSH/IHCEFIOS. 

FIND 

Implementation of the FIND statement is 
very similar to implementation of the open
ing branch for a direct access read 
(explained above). Control is passed from 
the compiler-generated code to IHCFCOMH/ 
I HCECOMH and on to IHCDIOSE/IHCEDIOS. 
IHCOIOSE/IHCEOIOS opens the data set if 
need be, and then checks to see if the 
record is already in the buffer. If it is, 
IHCDIOSE/IHCEDIOS updates the associated 
variable. If not, it issues a ~EAD macro. 
Then it returns through IHCFOOMH/IHCECOMH 
to the compiler-generated code. This READ 
begins filling the buffer. It is not 
checked until the next entry to IHCOIOSEI 
IHCEDIOS for this data set. 

226 

READ AND WRITE USING NAMELIST 

Namelist reading and writing is handlej 
by IHCNAMEL, with the assistance of 
IHCFIOSH/IHCEFIOS and IHCFCVTH. The 
compiler-generated object· code branche~ 
only once to IHCNAMEL (to entry point 
FRONL. for reads and to entry point FWRNL~ 
for writes), passing the address of the 
namelist dictionary containing the user'3 
specifications. I HCNAMEL uses this dic
tionary information to direct its opera
tions, calling IHCFIOSH/IHCEFIOS to do the 
actual reading or writing, and the appro
priate sections of IHCFCVTH to convert data 
and move it from buffer to user area or 
vice versa. 

From the point of view of IHCFIOSH/ 
IHCEFIOS and IHCFCVTH, a namelist read or 
write is no different than any other for
matted sequential read/write operation. 
IHCNAMEL calls IHCFIOSH/IHCEFIOS once to 
initialize the data set and once to close 
it, and as many times in between to read or 
write as the na~elist data req~ires. 
IHCNAMEL calls I HCFCVTH as many times as 
the namelist data requires. 

The namelist dictionary, which is the 
compiled version of the user's NAMELIST 
statement, consists of a 2-word namelist 
name field (right-justified and padded to 
the left with blanks), and as many entries 
as there were items in the NAMELIST defini
tion. There are two types of entries: one 
for variables, and one for arrays. They 
are illustrated in Section 1, "Namelist 
Tables." 

IHCNAMEL first stores the END= and ERR= 
addresses, if they exist, in the proper 
locations in IHCFCOMHlIHCECOMH. This makes 
them available to IHCFIOSH/IHCEFIOS and 
IHCERRM if end-of-file or an input/output 
error occur. 

IHCNAMEL searches through the data read 
by IHCFIOSHlIHCEFIOS looking for the name
list name that is located in the dic
tionary. When it locates the namelist 
name, it picks up the next data item. It 
now searches through the dictionary 
entries, looking for a matching variable or 
array name. When the name is located, 
IHCNAMEL obtains the associated specifica
tion information in that entry. 

Processing of the constant in the input 
data now begins. Each initialization con
stant assigned to the variable or an array 
element is obtained from the input record. 



The appropriate conversion routine is 
selected accordino ~n the type of the 
variable or array element. Control is then 
passed to the conversion routine to convert 
the constant and to enter it into: its 
associated variable or array element. 

Note: One constant is required for a 
variable~ A nQmber of constants equal to 
the number of elements in the array is 
required for an array. A constant may be 
repeated for successive array elements if 
appropriately specified in the input 
record. 

The process is repeated for the second 
and subsequent names in the input record. 
When an entire record has been processed, 
the next record is read and processed. 

Processing is terminated upon recogni
tion of the &END record. Control is then 
returned to the calling routine within the 
load ",odule~ 

IHCNAMEL takes the namelist name from 
th~' dictionary, puts it in the buffer, and 
hd~; IHCFIOSH/IHCEFIOS write it out. The 
[lrocf's3inq of thf-- vi'iriables and arrays 
li:,tf'd in the dictionary then begins. 

The tirst variahle or array name in the 
dictionary is moved to an output buffer 
followed by an equal sign. The appropriate 
conversion routine is selected according to 
the type of variable or array elements. 
Cant ral is then pas!"";ed to t,hp conversion 
routine to convert the contents of the 
vdriablp or till'" tirst array elf'ment and to 
enter it into the output buffer. A comma 
is inserted into the buffer following the 
conv0rted quantity. If an array is heing 
processed, the contents of its second and 
subsequent elements are converted, using 
the same conversion routine, and placed 
into the output buffer, separatt.'d by COlll

mas. When all of the array elements have 
been p£ocessed or if the ittm processed was 
a variable, the next name in the dictionary 
is obtained. The process is repeated for 
this and subsequent variablf' or array 
names. 

If, at any time, the 
exhausted, the current 
and processing resumes 
fashion. 

record length is 
record is written 
in the normal 

When the last variable or array has been 
processed, the contents of the current 
record are written, the characters &END are 
moved to the buffer and written, and con
trol is returned to the calling routine 
within the load module. 

Error Conditions 

IHCNAMEL calls IHCERRM if it cannot find 
a name in the dictionary (error 222), if a 
name exceeds permissible length (221), if 
it cannot locate the required equal sign in 
the input data (223), or' if a subscript is 
included f()r i'i variahle or is out of riinnp 
for a n a r ray (2 2 4) • - - - -- -. OJ -

STOP AND PAOSE (WRITE-TO-OPERATOR) 

Control is passed by the compiler
generated code to the FSTOP section of 
IHCFCOMH/IHCECOMH. This section determines 
if there is a· user message attached. If 
not, it simply branches to the IBEXIT 
section of IHCFCOMH/IHCECOMH to terminate 
load module execution. If there is a 
message, the FSTOP section issues the mes
sage to the console via SVC 35. It then 
branches to the IBEXIT section to terminate 
load module execution. 

Control is passed by the compiler
generated code to the FPAUS section of 
IHCFCOMH/IHCECOMH. FPAUS issues a SVC 35 
including the user's message or identifier, 
or "00000" if there was none. It then 
issues a WAIT to determine when the reply 
has been transmitted. After the operator 
or terminal user replies, IHCFCOMH/IHCECOMH 
returns control to the compiler-generated 
code. 

BACKSPACE 

control is passed from the compiler
generated code to the FBKSP section of 
IHCFCOMH/IHCECOMH, which passes control to 
IHCFIOSH/IHCEFIOS. 

For unblOCked records, IHCFIOSH/IHCEFIOS 
issues a physical backspace (BSP) to posi
tion to the de5irt~ record. If 2 buffers 
are used, it must: backspace twice to 
account for having read a record ahead. 
Before backspacing an output data set all 
WRITE requests ar~ checked and an endfile 
mark is written by issuing a T-CLOSE. If 
the record form is v, it reads the record 
and examines the segment Descriptor Word to 
determine if it has found the first seg-

Appendix F: Object-Time Library Subprograms 227 



ment. If it has, it issues another back
space. If it has not found the first 
segment, 2 backspaces are issued until the 
first segment is obtained, in which case it 
need only issue d final backspace. 

For FB and VB records it must keep track 
of the location within the block of the 
record it wants. For the case of blocked 
records a BACKSPACE statement does not 
necessarily imply issuing a physical back
space request. A physical backspace is 
only required when the preceding logical 
record desired is in the block preceding 
the block presently in the buffer. 
IHCFIOSH/IHCEFIOS determines the lenqth of 
the ~luck read by subtracting the residual 
count in t.he CCW from the DCB blocksize. 
This information is used in calculating the 
proper logical record in the buffer to 
satisfy the FORTRAN BACKSPACE. Spanned 
record:.., rndY n?qui n" s(~archinq hack. through 
more trlan one physical record. 

Cuntrol 
I HCECOMII, 
program. 

REWIND 

is returned to IHCFCOMH/ 
whi ch n't. urns to the rna in 

The compiler-generated oh;ect code 
passes control to the FRWND section of 
IHCFCOMH/IHCECOMH, which passes control to 
IHCFIOSH/IHCEFIOS. 

IHCFIO~:iHI IHCEFIOS issues a CU)SE macro 
with the REREAD option for the indicated 
data set. Thi~j hdS the efh~ct. of n~winding 
it. A FREEP(mL macro is issued to release 
the buffer space. Control returns through 
IHCFCOMH/IHCECOMH to the main program. 

END- FILE 

~ontrol is passed by the compiler
generate-d object code to the FEOFM section 
of IHCFCO~~/IHCECOMH, which passes control 
to IHCFIOSH/IHCEFIOS. 

If the previous operation for this data 
set was a read, IHCFIOSH/IHCEFIOS sets the 
DCBOFLGS bit to duw~y a write operation. 
It issues a CLOSF. macro with type T, This 
effects the writing of the end-of-file 
mark. (A 'T-CLOSE' rather than a full 
CLOSE is issued in order to handle any 
subsequent BACKSPACE requests.) A FREEPOOL 
macro is issued to release the buffer 
space. Return is through IHCFCOMH/IHCECOMH 
to the compiler-generated code. 

228 

ERROR HANDLING 

The library is designed to handle the 
following error conditions: 

• some compiler-detected source statement 
errors 

• library-detected errors 

• some program interrupts 

• scheduled load module abnormal 
termination 

• some user-defined and user-detected 
errors (only if extended error handling 
has been selected) 

Library operations for interrupts and for 
errors it detects itself depend on whether 
the extended error handling facility was 
selected at program installation time. 

The following library modules are con
cerned primarily with error handling: 

• IHCADJST 

• IHCERRM 

• IHCFINTH/IHCEFNTH 

• IHCFOPT 

• IHCIBERH 

• IHCSTAE 

• IHCTRCH/IHCETRCH 

• IHCUOPT 

In addition, IHCFCOMH/IHCECOMH is used for 
initialization, loading, and termination; 
IHCFCVTH is used for converting error mes
sage data; and IHCFIOSH/IHCEFIOS is used 
for printing error messages out. 

COMPII~ER- DETECTED ERRORS: IHCIBERH 

When the compiler examines and trans
lates the user's source statements, it may 
recognize one to be faulty, and nonexecut
able. At the corresponding location in the 
object code, the compiler inserts a branch 
to the library program IHCIBERH. The load 
module then executes in its usual fashion 
up to this point, when IHCIBERH gains 
control. 

If the faulty statement has an Internal 
Statement Number (ISN), IHCIBERH translates 
it into hexadecimal and inserts it into its 



error message--230. It also picks up the 
name of the user routine containing the 
faulty statement, and adds it to the mes
sage. After IHCERRM is utilized to have 
the message printed out, IHCIBERH goes to 
the IBEXIT section of IHCFCOMH/IHCECOMH to 
have load module execution terminated. 

PROGRAM INTERRUPTS 

Part of the library's initialization 
procedure is to issue a SPIE macro instruc
tion. informing thp system that the library 
wishes to gain control when certain program 
interrupts occur. The SPIE, issued by 
IHCFCOMH/IHCECOMH, specifies library con
trol for the following interrupts: 

6--specification* 
9--fixed-point divide 

Il--decimal divide 
12--exponent overflow 
11--exponent underflow 
1S--tloating-point divide 

The exit routine addres[, sp'cified for all 
of the dbove IS ARITH~, the beginning of 
IHCFINTH/IHCEFNTH. (If interrupts 2, 1, 4, 
S, or 7 orrur for the 10a,1 module, th(' 
system hegins abnormal termination proces
sinq. Codes 8, 10 and 14 are disabled when 
the task gains control, so these interrupts 
n(>vpr occur.) 

IHCFINTH/IHCEFNTH receives control from 
the system, which passes the address of the 
Proqram Interrupt Element (PIE) in register 
1. IHCFINTH/IHCEFNTH first saves the 

system saves only 14-2 in the PIE). 
IHCFINTH/IHCEFNTH next examines the old 
Proqram Status Word (PSW) in the PIE to sef> 
if the interrupt was prAcisp or imprecic;f-', 
and, if the latter, whether single or 
multiple. (Imprecise interrupts are 
explained more fully in the publication IBM 
System/360Qperating System: sup~E~i~~~ 
and Data Manage~~~! __ §~rv!~~~, Order No. 

GC28-6646.) This information is inserted 
in the error message--210. The specifir 
interrupt type(s) is then determined. 

Action for Interrupts 9, 11, 12, 13, and 1S 

IHCFINTH/THCEFNTH sets the switch OVFIND 
or DVCIND in IHCFCOMH/IHCECOMH to indicate 
that one of the three divide checks or 

*Issued only if the 
boundary alignment 
installation time. 

user 
option 

selected the 
at program 

exponent overflow or underflow t-,as 
occurred. (These switches are referenced 
by the routines IHCFnVER and IHCFDVC!!.) 
When extended error handling is not in 
effect, IHCFINTH takes the following corre
ctive actions: 

9--nothing 
l1--nothing 
15--if the operation is 0.0/0.0, the 

answer register(s) is set to 0.0; 
if the operation is X.Y/O.O 
(X.Y*O.O), the answer register(s) 
is set to the larqest possitle 
floating-point number-

12--the result register{~~) i~ ~)2t to 
the largest possible floating-point 
number 

13--the result register(s) is set to 
0.0; if the underflow resulted from 
an add or subtract operation, the 
condition code in the old PSW l' 

set to O. 

Note that for corrertiv~ ~rtions with 12, 
13, and 15, it is npce,j,;ary for IHCFINTH tc 
first determirH~ if the faulty in,~truction 

contains single or double precision 
operands. 

IHCFCVTH i~; calleci (twice) to conVf"rt 
the error rne~~';dqP rontpntc;, and IHCFI(X;!l i; 
callpd tu print it ouL Then IHCFINTH 
returns to the sy~;tpm interrupt hdndler, 
and 10dd module execution f"_'vpntIJrllly 
resumes at trw in::truction followinq thf' 
onp that Cdll~~prl the intprrupt. 

When ~xt endHJ f.:,rror handl inq hi1:; hf'P:1 
sel ecter}, HICE RkM i _; Cd lIed to dete rmi BP if 
the user desires hi,; own corrective dction 
for tt1i~; 0YY(',Y- ('rhi,: procc'ollrf , 
described in the ~;pction "Extended [rror 
Handling" r,('low.) If no user artion ic; 
specified, the ,;tandard art ion~; descrl herl 
above arp followed. In either instance, 
IHCERRM ha~; the f"rror message printed out. 

When d ,;peei f icat_ion interrupt has 
occurred, IHCFINTH/IHCEFNTH loads IHCADJST, 
if not already loadf'd. After preparing the 
error mps~age, it hranches to INCADJST 
passing the PIE and other information. 

There is a great variety of error condi
tions that can cause a specification inter
rupt. (They are explained in the pUblica
tion IBM System/300: PrinciE!~~~L-2~E~:' 
tion, order No. A22-6821.) IHCADJST is 
designed to correct only one--the misalign
ment of operand data in core. For any 
other condition, IHCADJST causes an abnor
mal termination by cance~ling the SPIE, 

Appendix F: Object-Time Library Subprograms 229 



backing up the PSW pointer to the instru~
tion that caused the original interrupt,. 
and returning to the system. 

When IHCADJST determines that it has a 
data boundary alignment problem to correct, 
it calls IHCFINTH/IHCEFNTH to have the 
error message (210) written out. Next 
IHCADJST issues a new SPIE, for protection 
(4) and addressing (5) excepti~~s, so that 
if an interrupt occurs while it is trying 
to fetch a copy of the operand data, its 
own special section--PAEXCPT--will gain 
control. If one of these exceptions does 
occur, PAEXCPT calls IHCFINTH~IHCEFNTH to 
have the error message written, and then 
causes abnormal termination as described 
above. 

After IHCADJST has properly aligned the 
data in a temporary storage location and is 
ready to try to re-execute the original 
instruction, it issues yet another SPIE 
(overlaying the previous) for interrupts 4, 
1, 9, 11, 12, 13, and 15. If re-execution 
of the original instruction is successful, 
and the R1 field of the instruction re
executed was 14, 15, 0, or 1, IHCADJST puts 
the new contents of that register into the 
PIE. If the condition code was changed by 
the re-execution, the new condition code is 
put,into the PSW located in the PIE. If 
the instruction re-executed was a ST, STE, 
or STD, the data is moved to the correct 
location in the load module. The original 
load module SPIE is re-established, and 
~ontrol is returned directly to the super
visor, rather than via IHCFINTH/IHCEFNTH. 
Note that the correction of data misalign
ment is only temporary; the permanent loca
tions of user variables remain the same. 

If re-execution of the original instruc
tion causes a second interrupt, control is 
given to EXCPTN in IHCADJST. For code 1, 
IHCFINTH/IHCEFNTH is called to have the 
error message written, and IHCADJST then 
causes abnormal termination in the manner 
described above. For the other exceptions, 
the original PIE is reconstructed, the 
original SPIE re-established, an~ control 
passed ba~k to IHCFINTH/IHCEFNTH to process 
this new interrupt in its usual fashion. 

LIBRARY-DETECTED ERRORS 

A number of the library routines 
examine their operational data for flaws. 

.In the case of instruction misalignment, 
when it is determined the next instruction 
is also misaligned and will cause abnormal 
termination just as well, the PSW pointer 
is not changed. 

230 

For example', most of the mathematical rou
tines c,heck to see if the arguments are 
within specified ranges; IHCFCVTH, in some 
cases, sees whether the data it is asked to 
convert is actually in the form specified. 

When a library routine finds an error, 
it sets up a branch to IHCERRM. If 
extended error handling has been selected 
for the library, this is a separate module. 
If not, it is simply the entry point name 
for module IHCTRCH (and module IHCERRM does 
not exist). Without extended error han
dling, library-detected errors are almost 
always treated as terminal conditions. 

Without Extended Error Handling 

IHCTRCH is passed the number of the 
error condition and the message if one is 
to be printed for this particular case •• 
IHL~RCH's functions are to have the error 
message printed and, more significantly, to 
create the traceback map and have it 
printed. IHCTHCH employs IHCFCVTH to con
vert information to printable decimal and 
hexadecimal format, and IHCFI0SH to do the 
actual printing. Then IHCTRCH calls the 
IBEXIT section of the IHCFCOMH to terminate 
load module execution. Condition 218 is an 
exception if the user has specified an ERR= 
parameter on his READ source statement. In 
this case, IHCTRCH picks up this address 
from IHCFCOMH and passes control to it. 

The traceback information printed con
sists of routine names in the load module 
intprnal calling sequence, the ISN of each 
branch instruction, and each routine's 
registers 14-1. In most cases, the map 
beqins with the routine that called the 
library module that detected the error, 
then lists the routine that called that 
caller, and so on back to the compiler
qenerated main program. In the case of the 
mathematical routines, however, the trace
back map begins with that mathematical 
routine detecting the error. IHCTRCH gets 
the map information by using register 13 as 
a starting point and working its way back 
through the linked save areas. Because 
some library routines (e.g., IHCFCOMH) do 
not use standard saving procedures, the 
tracing can become rather complicated. 

IHCTRCH terminates the trace when it 
finds it has done one of three things: 

1. reached the compiler-generated main 
routine 

.Errors 211-214, 211, 219, 220, and 231-237 
have only IHCxxxI printed out, without any 
text. 



2. redched 13 levels of call 

3. found a calling loop 

In the second and third cases, it prints 
'TRACEBACK TERMINATED', and in all cases 
prints the main program entry point. 

IHCTRCH goes immediately to the IBEXIT 
section of IHCFCOMH for termination if it 
is entered a second time. This can happen 
if an input/output error occurs while 
IHCFIOSH is trying to print IHCTRCH's 
output. 

With Extended Error Handling 

When a library routine detects an error 
and extended error handling is available, 
it branches to the error monitor routine 
IHCERRM. The operation of this routine is 
explained below in the section "Extended 
Error Handling Facility." 

ABNORMAL TERMINATION PROCESSING 

When the load module has been scheduled 
by the system for abnormal termination, the 
library attempts to have any output buffer 
contents written out. 

initialization, 
STAE macro, spe
module is ever 

termination, the 
IHCFCOMH/IHCECOMH 

by the system. 

During load module 
IHCFCOMH/IHCECOMH issues a 
cifying that if the load 
scheduled for abnormal 
address EXITRTN1 in 
should be given control 

When EXITRTN1 does gain control, it 
loads IHCSTAE from the link library and 
branches to it, passing along the system 
input/output status codes it received. 
These are: 

Code <in 
Register 6) 

o 

8 

12 

Meaning 
Active input/output was 
quiesced and is restorable 

Active input/output was 
halted and is not restorable 

No active input/output at 
abnormal termination time 

No space available for work 
area 

IHCSTAE looks at this code and deter
mines which action it will take. 

After using IHCFCVTH to convert the 
abnormal termination code (either system or 
user) and the load module PSW into hexade
cimal, IHCSTAE inserts them into its error 
messaaes (240). and issues the meSSAaPS V;rl 

WTO macro instructions. Then it ret~r~s t~ 
the supervisor, indicating (with a 0 in 
register 15) the abnormal termination is to 
be completed. 

Codes 0 and 8 

After using IHCFCVTH to convert the 
abnormal termination ~ode <either system or 
user) and the load module PSW into hexade
cimal, IHCSTAE inserts them into its mes
sages. Then, IHCSTAE returns to the super
visor, indicating with a 4 in register 15 
that a retry attempt (RETRY in IHCSTAE) is 
wanted. When this section gains control, 
it first issues another STAE macro instruc
tion specifying a new exit routine, so that 
in the event of a new abnormal termination 
condition arising, loopinq will not occur. 
Next, the system's STAE work area is tested 
to see whether there is active restorable 
input/output or no input/output active at 
all. If the former, SVC 17 is issued 
(RESTORE macro) to prepare for the resump
tion of the load module's input/output 
activity. 

In both cases, IHCERRM is called to 
print message 240 and a traceback map. 
Before calling IHCERRM, however, IHCSTAE 
searches through the chained save areas 
(beginning with the supervisor's) to deter
mine whether or not the abnormal termina
tion condition will prevent the traceback 
map from listing the routine causing the 
ahnormal termination; if it will, IHCSTAE 
appends a statement to this effect in its 
error message. 

If extended error handling is not in 
effect, IHCTRCH (entry point IHCERRM) exits 
to the IBEXIT section of IHCFCOMH/IHCECOMH. 
If extended error handling is in effect, 
IHCERRM returns to IHCSTAE, which calls the 
IBEXIT sect.ion of IHCFCOMH/IHCECOMH. The 
IBEXIT section calls IHCFIOSH/IHCEFIOS to 
complete pending output requests--that is, 
flush the buffers. (This is the norwal 
load module termination process. ) 
IHCFCOMH/IHCECOMH finally returns to the 
supervisor. 

In the event of a second abnormal ter
mination condition occurring, control is 
given to EXITRTN3 in IHCSTAE. No retry is 
attempted. Messages are issued via WTO 
macro instructions, and control is returned 

Appendix F: Object-Time Library Subprograms 231 



to the supervisor ~o complete abnormal 
termination. 

EXTENDED ERROR HANDLING FACILITY 

Three routines are centrally involved 
with extended error handling operation. 
'They are: 

1. IHCUOPT--the option table 

2. IHCFOPT--the routine available to the 
user to reference and modify the 
option table 

3. IHCERRM--the routine that handles the 
errors according to the option table 
entries 

In addition, IHCETRCH is used to produce 
traceback maps. (When extended error han
dling has ~ot been selected, IHCFOPT does 
not exist at all, IHCERRM does not exist as 
a module but only as an entry point in 
IHCTRCH, and IHCUOPT is only 8 bytes long.) 

The format of the option table is illus
trated in Figures 22 through 2~. The table 
is referenced by displacement. It is 
sequential, but begins (after a preface) 
with error 207--the lowest library error. 
There is an entry for every numher from 207 
to 301, although the library recognizes no 
error condition for some of them -- e.g., 
239 (they are reserved for future use). 
Thus, the entry for error 258 is 
(258-207+1)x8 bytes into the table (allow
ing for the preface). A few library error 
numbers (900-904) are not in the table. 

Certain values are inserted in the 
option table at system generation time. 
These original values are listed in Figure 
25. The user has the power to alter some 
of these values temporarily--that is, alter 
the copy in main storage for the duration 
of the load module--by using FORTRAN source 
statements. All the library error entries 
except 230 and 240 can be altered. 

The user's source statement requests for 
referencing and altering the option~able 
are handled by IHCFOPT, which is branched 
to directly by the compiler-generated code. 
IHCFOPT has three entry points for its 

232 

three functions: ERRSAV, ERRSTR, and 
ERRSET. 

ERRSAV AND ERRSTR: These two functions are 
quite simple. They dre passed an error 
number and an address. ERRSAV takes a copy 
of the requested error number entry from 
the table and places it at the indicated 
address. ERRSTR takes the new 8-byte entry 
from the indicated user address and inserts 
it in the table, overlaying the"original 
entry. 

ERRSAV and ERRSTR both first check to 
see that the error number is within the 
table range. If it is not, they issue 
message 902, employing IHCFCVTH and 
IHCEFIOS in the process. ERRSTR also 
checks bit 1 of byte 4 of the old table 
entry to make sure modification is permiss
ible. If it is not, it issues message 903, 
with the help of IHCFCVTH and IHCEFIOS. 
Return is to the calling program in all 
cases. 

~~~§~T: ERRSET also modifies table 
entrles, but is more flexible than ERRSTR.
It is passpd either five or six parameters,
and takes the following actions:

• The error number: a reference only.

• ~ __ ~~_!i~it_£2~~-I2E_en!Ey_fi~!g-2~:
contents are moved in as is, unless the'
count is greater than 255, in which
case the field is set to 0, or unless
the count is 0, i~ which case no action
is taken.

• ~_~~~~~~~~~ __ £Q~~~ __ f2E __ ~~~fielg
two: contents are movpd in as is,
unless they are negative or zero. If
they are negative, the field is set to
0; if they are 0, no action is taken.

• Traceback_!~g~~~teg_2!_~~EE!~~Q: if
1, bit 6 of entry field four is turned
off; if 0, it is turned on: if any
other number, no action is taken.

• A user exit routine a~Q!~~~L_or ab~n£~
thereotL __ f2! __ ~~~!Y __ f!~!~_ fiv~: the
value is moved in as is.

• (Optional parameter) - Either an error
number higher than one--rn the first
parameter, or, if the first~!~me!~i
is error 212, a request for print
control: in the first case, all
entries from the lower number to the
higher are altered as indicated: in the
second case, if a 1, bit ° of field
four is set to 1, if not a 1, it is
set to 0.

ERRSET checks to make sure that the error
number entry or entries indicated are
within the table range. If not, it issues

message 902, using IHCFCVTH and IHCEFIOS.
ERRSET also checks to make sure ~h~~ the
entry or entries permit modification. If
they do not, it issues message 903 using
IHCFCVTH and IHCEFIOS.

The error monitor is called in th~
following three cases:

1. When a library ~odule has discovered
an error condition during its proces
sing (entry point IHCERRM)

2. When the user's program has detecten
one of the user-defined errors (302-
899) and wishes to handle it according
to his option table entry (entry point
ERRMON)

1. Durinq normal load module terminRtion
processing, to give the error count
summary (entry point IHCERRE)

In the first two cases, the error monitor
consults the corresponding entry in the
option table IHCUOPT to determine what
actions it will take for this particular
error condition.

After using the error number passed to
lt to locate the corresponding option table
entry, the error monitor updates the error
count field and compares it to the limit
field. If the limit is now exceeded, it
begins the termination process. This
involves having IHCEFIOS print out message
900 and the error message passed by the
caller (if the option table indicdt~s it i~
desired), and having IHCETRCH producp the
traceback map (if the option table so
indicates>. Finally, the IBEXIT section of
IHCECOMH is gi t1en control. (The error
monitor may be entered again to give the
error summary. See "Error Summary.")

If the error count limit is not yet
exceeded, the error monitor has the caller
error message and the traceback map pro
duced (if the table so indicates), u~;ing

IHCEFIOS and IHCETRCH, respectively. Then
it sees whether or not a user exit routine
is specified. If it is, IHCERRM branches
to it passing along data supplied by the
routine that detected the error. The
nature of this data depends on the error
detected.

The user routine is required to return
to the error monitor, indicating that it
has either performed corrective action
itself (a 1 in the first parameter), or
wants standard library corrective action (a
o in the first parameter). The error

monitor issues a m~s3ag~ reporting on thi
status. and then returns to it5 orlglna
caller, passing the correction code. 1h
caller either resumes its normal proces
sing, or does it.s standard correction
before continuing.

If the error monitor finds no user ~xit
address, it returns to thp cdllpr request
ing standard correction.

SPECIAL CONDITIONS: The error li'oni tor w 111
not allow recursive usage.
enter~d a second time before it!

it is
ell rr "·n:

processing ~~ finished, it iss~ps message
901 and begins the termination procedure.
The err'or monitor also cheLk~) f () tfidke :~ljt'i
th~ error number specified is within the
option table range; if it is not, it issues
",essa ge 902.

The error monitor performs an ad~itionaJ
step when it finds the error to be 218. In
this case, after going to the user exit
routine if there was one, IHCERRM detFr
mines from IHCECCMH if ~he user has spec
ified an ERR= address on his READ source
statement. If so, IHCERRM branches to it.

For error 218, the error monitor issues
a FPEEMAtN macro instruction to free the
message area the calling routine acquired.

ERROR SUMMARY: The summary rout.ine (entry
IHCERRE) simply loops through the option
tabJe, f indi ng those entries for which
errors have occurred during load module
execution. and putting the error numbers
and their accumulated counts in the mes
sage. It w,es IHCFCVTH f or conversion and
IHCEFIOS for pd fIling. II IHCEFIOS ha::;
identified an error condition for the
object error unit, the summary is skipped.

~~t~n~~~. Error Handling Trackback--IHCETRCH

IHCETRCH pertorms in the same manner dS

lrlCTRCH, with these three exceptions:

1. IHCETRCH is called by IHCERRM, rather
than directly by the error-detecting
routinf:>.

2. IHCETRCH does not have the error
detecting routine'S message printed
out, since this is done by IHCERRM.

3. IHCETRCH can also be called by the
user, through a source statement call
ing its entry point ERRTRA. A trace
back requested in this way is not
necessarily connected with any error
condition. IHCETRCH returns to the
user program.

Appendix F: Object-Time Library Subprograms 233

Table 11. IHCFCVTH Subroutine Directory
r----------T--________ ,
I Subroutine I Function I
~----------+--~ FCVAI Reads alphameric data.

FCVAO Writes alphameric data.
FCVCI Reads complex data.
FCVCO Writes complex data.
FCVDI Reads double precision data with an external exponent.
FCVDO Writes double precision data with an external exponent.
FCVEI Reads real data with an external exponent.
FCVEO Writes real data with an external exponent.
FCVFI Reads real data without an external exponent.
FCVFO Writes real data without an external exponent.
FCVGI Reads general type data.
FCVGO Writes general type data.
FCVII Reads integer data.
FCVIO Writes integer data.
FCVLI Reads logical data.
FCVLO Writes logical data.
FCVZI Reads hexadecimal data.
FCVZO Writes hexadecimal data.

----------~--

CONVERSION

Routine IHCFCVTH, the library conversion
routine, is called by IHCFCOMH/IHCECOMH to
convert user input/output data under FORMAT
control, by IHCNAMEL to convert user input/
output data under NAMELIST control, and by
service routines (such as IHCFDUMP and
IHCDBUG) and error handling routines (such
as IHCERRM and IHCTRCH) to convert output
data into printable (EBCDIC) hexadecimal
and/or decimal form.

IHCFCVTH is divided into a number of
subroutines (see Table 11'. Each subrou
tine is designed to convert a particular
type of input or output data. The library
routine calling IHCFCVTH selects which con
version operation it wants, and branches to
the appropriate subroutine. The calling
routine passes the address of the existing
data item, the address at which to place
the result, the length, scale factor, and
decimal point location of the existing data
item, and other related information.

The subroutine then converts and moves
the data item, and returns to its caller.

The library contains a large number of
mathematical routines, and some service
routines. When a particular routine has
been requested by the user in his source
program (by entry point name), or when the
compiler has recognized an implicit need
for a mathematical function, it is branched
to directly from the compiler-generated
code.

234

MATHEMATICAL ROUTINES

The mathematical routines are generally
independent of the other library programs
(except when they detect errors or cause
arithmetic-type program exceptions). They
perform their calculations, possibly with
the assistance of another mathematical rou
tine or two, and return .directly to the
compiler-generated code. The internal
logic of these routines is documented in
the publication IBM S~stem/360 operatin1 System: FORTRAN IV Li rarY--Mathematlca
eng __ §!~!!£! __ §~QE~Q~~~, Order No. GC28-
6818, under the section "Algorithms."

SERVICE SUBROUTINES

!tlCFOVCH (Entry Name DVCHK)

The function of IHCFDVCH is to test the
status of the divide check indicator switch
(DVCIND--Iocated in IHCFCOMH/IHCECOMH) and
return an answer in the location specified
in the call. This switch is turned on (set
to X'FF' by the library's interrupt handler)
when it finds a divide exception has
occurred. IHCFDVCH inserts a 1 in the
calling program's answer location if the
switch is on, or a 2 if it is off •• The
answer location is the argument variable in

.Before checking the switch, both IHCFDVCH
and IHCFOVER issue the special no
operation BCR 15,0, which drains pipe-line
models (e.g., Models 91 and 195) to
ensure sequential execution.

the original FORTRAN statement CALL
DVCHK{arg). Its address is pointed to by
Register 1 when IHCFOVCH gains control.

If the DVCINO switch is on, IHCFDVCH
turns it off (set to X'OO'); if off, it is
left off. IHCFOVCH returns to the calling
program.

IHCFOVER (Entry N!m!-QY~BE1!

IHCFOVER testa for overflow and under
flow, and performs in a manner similar to
IHCFDVCH. The Iwitch it tests is OVFINO -
which is also found in IHCFCOMH/IHCECOMH,
and set by the library interrupt handler.
OVFIND set to X'FF' indicates overflow has
occurred, X'01' indicates underflow, X'OO'
indicates neither. IHCFOVER sets the call
er's answer location to 1 for overflow, 3
for underflow, and 2 fer neither.

If on, OVFIND is turned off; if off,
left off. IHCFOVER returns to the calling
program.

IHCFSLIT performs two functions: sets
the pseudo-sense lights (entry SLITE), and
reports back to the caller on their status
(entry SLITET).

The four pseudo-sense lights are four
bytes in IHCFSLIT labelled SLITES. These
switches are not connected with any system
switches, nor directly with any system
condition. They are internal to the load
module, and have meaning only to the FOR
TRAN user, who, employing IHCFSLIT, both
sets and interprets them.

SETTING THE SWITCHES: SLITE either turns
off all the switches (sets them to X'OO'),
or turns on one (sets it to X'FF'). When
the argument passed to it is 0, SLITE turns
all switches off. When the argument is
1-4, it turns on the corresponding switch-
that is, an argument of 2 turns on the
second (from leftl byte of SLITES.

TESTING THE SWITCHES: SLITET is passed two
parameters, the first indicating the parti
cular switch to be tested, and the second
pointing to a location for its answer.
SLITET returns the answer 1 if it finds the
switch on, and 2 if it is off. If it finds
the switch on, it turns it off; if it is
off, it is left off.

ERROR CONDITIONS: Both SLITE and SLITET
first test their arguments for correct
range. For SLITE, this must be 0-4; for
SLITET, 1-4. When an argument is in error,

they get the address of the integer output
section of IHCFCVTH (FCVIO) from IHCFCO~H/
IHCECOMH, and branch to it to have the
error message contents converted. Then
IHCFSLIT branches to IHCERRM (see the sec
tion on library-detected errors).

If extended error handling .~ not in
effect, IHCERRM goes to the IBEXIT section
of IHCFCOMH/IHCECOMH to terminate load
module execution. If extended error han
dling is in effect, and IHCFSLIT, u~on
regaining control, finds the user did~no
special fixup. IHCFSLIT's standard correc
tive action is as follows:

SLITE: no action at all
SLITET: answer returned to caller is 2;

no switches are changed

IHCFEXIT (Entry Name EXIT)

IHCFEXIT
section of
terminates
usual way.

simply branches to the IBEXIT
IHCFCOMHlIHCECOMH, which then
load module execution in its

IHCFDUMP (Entry Names DUMP and PDUMP)

IHCFDUMP's function is to have
out on the object error unit the
contents specified in the call,
format specified. The absolute
location of each request is also
out.

printed
storage
in the
storage
printed

The call parameters are in this form:

DC AL4(Al)
DC AL4(Bl)
DC AL4(Fl)

DC AL4(An)
DC AL4(Bn)
DC XL1'FF',AL3(Fn)

where A and B are addresses of the outer
limits of the storage to be dumped, and F
is either the integer format number itself,
or the address of a location containing the
number. The specifications are:

o hexadecimal
1 LOGICAL*l
2 LOGICAL*4
3 INTEGER*2
4 INTEGER*4
5 REAL*4
6 REAL*8
7 COMPLEX*8
8 COMPLEX*16
9 literal

Appendix F: Object-Time Library Subprograms 235

If the user passes any other number,
IHCFDUMP chooses 0 (hexadecimal) as a
defa u1 t format.

The procedure is identical for DUMP and
PDUMP, except for two things:

• if DUMP finds an input/output correc
tive action routine is in process, it
functions normally; PDUMP, however,
instead of proceSSing, goes to section
ERR904 in IHCFCOMH/IHCECOMH to print
error message 904 and to terminate load
module execution. (An input/output
corrective action routine in process is
indicated by the first byte of SAVE in
IHCFCGMH/IHCECOMH set to anything other
than X'FF'.)

• clf tpr normal processing, DUMP gOE'S to
t h.' I BEXIT section of IHCFCO~m/IHCECOMH
to terminate loan module execution;
PDUMP, however, returns to the caller
tor continued execution.

I HCFDUMP uses IHCFCVTH and IHCFIOSH/
IHCFFIO:; to assist in its operations.
After yptting the andress of IHCFIOSHI
I llCEFI 0:; from IHCFCOMH/IHCECOMH, IHCFDUMP
bra n c tw : ; t 0 i nit i ali z f~ for p r i n tin g • It
n.'xt mov('~; d sect_ion to be dumped into the
IIlCFIO!,i\/IHCEFIUS buffer, and determines
thf' foundt type requested •• It passes this
information to the FCVZO part of IHCFCVTH
('Z' output), for conversion. Lastly, it
branches to IHCFIOSH/IHCEFIOS to print out
the 1inf.·. IHCFDUMP loops in this manner
until it exhausts the calling list.

If, during the printing, IHCFIOSH/
IHCEFIOS indicates it has encounteren an
input/outp~t error, Illef'DUMP skips the re
mainder of its work.

IHCDB(j(~ is called by the compi ler
generated cbiect code to implement most
uspr DEBue; requests. Gpnerally, IHCDBUG
assembles dehug information and uses
IHCFIOSH/IHCEFIOS to write it out. IHCDBUG
may also have occasion to use IHCFCVTH
data conversion), IHCNAMEL (to produce
PLAY requests), IHCUATBL (to obtain
default object error unit number),
IhCFCOMH/IHCECOMH (in which to store
reqisters).

(for
D15-
the
and

user

.IHCFDUMP expects tl.e format type requested
to corrpspond to the format of the data in
main storage. Therefore, asking it to
print out an INTEGER variable in REAL
format, for example, will result in a
garbled dump.

236

IHCDBUG has a single entry point-
DEBUG#--which is the head of a branch
table. This table is outlined in Table 12.

Table 12. IHCOBUG Transfer Table
r------~--------~-------------------------,
I Dis- I Branches I I
Iplace- I to I I
Iment ISection I Function of Routine I

~------+--------+-------------------------~

I
I

o I TRACE IPass label of statement
I Ito be traced

I
4 SUBTREN IPass subprogram name on

I entry
I

8 SUBTREX Pass 'RETURN' on subpro
gram exit

12 UNI'!' Initialize
reference
output

data
number

set
for

16 INITSCLR Pass data for initialized
variable

I 20 INITARIT Pass data for initialized
I
I

initializedl

1
I I

a r ray Eo 1 e me n t

I 24 IINITARAY Pass data for
I
I

I array I
I

I 28
I
ISUBCHK Pass dat~ on

a rra y element
referenced

I
I

I
I

I 32 ITRACEON Turn on trace switch
I I
I 36 ITRACEOFF\Turn off trace switch
I I I
I 40 IDISPLAY IDisplay referenced items
I I I
I U4 ISTARTIO IBegin input/output
I
I

I loperation
I I

I 4R IENOIO lEnd input/output
I I loperation l ______ ~ ________ ~ ________________________ _

In addition to the 13 routines listed in
the branch table, IHCDBUG uses the follow
ing subroutines:

• OUTITEM, which puts a data item into
OBUFFER

• OUTNAME, which puts the name of an
array or variable into DBUFFER

• OUTINT, which converts an integer to
EBCDIC

• OUTFLOAT, which puts a floating-point
number into DBUFFER

• OUTBUFFER, which controls the output
operation for DBUFFER

• ALLOCHAR, which moves a character to a
save area

• FREECHAR, which extracts a character
from a save area

• OUTPUT, which transfers OBUFFER to
IHCFIOSH/IHCEFIOS for printing

The following items in IHCDBUG are
initialized to zero at load module execu-
tion time:

• DSRN, the data set reference number
• TRACFLAG, the trace flag
• IOFLAG, the input/output in progress

flag
• DATATYPE, the variable type bits

Whenever information is
output, it is placed in a
called DBUFFER. The first

assembled for
77-byte area
character of

this area is permanently set to blank to
specify single spacing. The next seven
chalaclers dIe the string--DEBUG--to pro
vide a label for the output.

The functions of the various IHCDBtJ(;
sections are:

TRACE
If TRACFLAG is off, control is
returned immediately to the caller.
Otherwise, the charact~rs iTRACE t dIE'

moved to DBUFFER, the section OUTINT
converts the statement numher to EBCD
IC and places it in DBUFFER, dwi
control is passed to OUTEUFFR.

SUBTREN
The characters 'SUBTRACE' and thf' namp
of the program or subprogram are moved
to DBUFFER and a branch is ma~e to
OUTBUFFR.

SUBTREX

UNIT

The characters 'SUBTRACE .RETURN.' alP
moved to DBUFFER and a branch is made
to OUTBUFFR.

The unit number argument is placed in
DSRN and the routine returns to it3
caller.

INITSCLR
The data type is saved, the location
of the scalar is computed, subroutine
OUTNAME places the name of the scalar
in DBUFFER, and a branch is made to
OUT ITEM.

INITARIT
This routine saves the data type,
computes the location of the ~rray
element, and (via the subroutine OUT
NAME) places the name of the array in
DBUFFER. It then computes the element
number as follows:

XXX=«YYY-ZZZ)/AAA)+l

where:
XXX is element number
YYY is element location
ZZZ is first array location
AAA is element size

and places a left ['arenthesis, the
element n1..lIr.ber <converted to EECDle by
subroutine OU1INT), anJ A right r~ren
thesi s ill :JBU FFEP t ollowi n'J thp (j r ray
name. A branch i~; tt:F'n nad., tc

INITARAY
I flO F LA Gis 0 r ; t h p c h a r d etc r
is placed in DBUFfER, f ollowfd
address of the arqumpnt li~t,
branch is mrldF' to (lIn E~{Jf FP.
wise, a call to INIT,L,FdT j;~

structed, and thf' rC"ltjr,.

t h : 0 ugh t hat: cell 11m t i J ~. lJ
of thE' art a y r j c1 V (, i) E C n ~ . r:- (

SUBC'HK

by t hr
(:~ r ir1 A

(. t.'t{'r

,', n-
1 ,-, F':

The location of the drr"i E'lF'mcnt i.~

computed. If it falls within tht
array boundaries, control js rE'turnpd
to the caller. If it is c·utsidp tht
array boundarips, SUPCHK places the
characters 'SUBCHK' into [lI:\UFFEP, dnd
computes the elewpnt number. OUTINT
converts this number into ERC[IIC ann
moves it intC' D8UF'FER. OUTNAJv:E move:
the array name into on\JFFEk. finally,
o lJ T rm F F R i~; call P rl •

TRACEON
TRACFLl\(, j:; t 11 r ned on (~;d to non
zero), an'1 control returned to caller.

TRACEUF'r'
TRACFLAG is t u rnpd ot t (Sf't to zero),
and control rf'turnpd to callpr.

DISPLAY
If 10FL A(; is on, t hp chd ractFr~;

'DISPLAY DURING I/O SKIPPEO'

are movpd to uUTBUFFR. othf' r wi se, rl

callinq ;;equencp for the NAMEL1:)T
wr :i t.E' rout ine (1 HCNAMI:,L) is cnn
structeri. If n:;HN i~; pqual t.O zpro,
the unit number tnr ;~Y[iOUT (in
IHCUATBL + b) i~; U:;f'd d s the uni t pa:, sed
to the tJAMELr~;T writp r01ltine. On

return from the NAMELI:;T writf', thj:;

routine exits.

STARTIO

ENDIO

BYTECNT is set to 251 to indicate that
thp current area is full, the IOFLAG
is set to X'RO' to indicate that
input/output is in progress, the
CURBYTLC is set to thp adrlress of the
SAVESTRl (where the location of the
first main block will be), and the
rout.ine exits. (Spp the discussion of
ALLOCHAR.)

The IOFLAG is saved in TEMPFLAG and
IOFLAG is reset to zero so that thL;
section may make debug calls that

Appendix F: Object-Time Library Subprograms 237

result in output to a device. If no
information was saved during the
input/output, this routine exits.

If information was saved, section
FREcCHAR is used to extract the data
from the save area and move it to
DBUFFER. FREECHAR does this one
character at a time until it finds a
X'15', indicating the end of the line.
It then calls OUTPUT to have DBUFFER
written out. If FREECHAR finds a
X'FF', indicating a full array, it
calls INITARAY to move the array data
to DBUFFER.

If no main storage or insufficient
main storage was available for saving
information during the input/output,
the characters

'SOME DEBUG OUTPUT MISSING'

are placed in DBUFFER
information Cif any)
out. The subroutine
used to write out
this routine returns

after all saved
has been written
OUTPUT is then
the message, and

to the caller.

OUTITEM
First, the characters ' = , are moved
to DBUFFER. Four bytes of data are
then moved to a work area on a double
word boundary to avoid any boundary
alignment errors when registers are
loaded for logical or integer conver
sion. A branch on type then takes
place. For fixed-point values, the
routine OUTINT converts the value to
EBCDIC and places it in DBUFFER. A
branch to OUTBUFFR then takes place.

For floating-point values, subroutine
OUTFLOAT places the value in DBUFFER.
A branch to OUTBUFFR then takes place.

For complex values, two calls to OU1-
FLOAT are made -- first with the real
part, then with the imaginary part. A
left parenthesis is placed in DBUFFER
before the first call, a comma after
the first call, and a right parenthe
sis after the second call. A branch
to OUTBUFFR then takes place.

For logical values, a T is placed in
DBUFFER if the value was nonzero:
otherwise, an F is placed in the
DBUFFER. A branch to OUTBUFFR then
takes place.

OUTNAME
Up to six characters of the name are
moved to DBUFFER. OUT NAME returns to
its caller upon encountering a blank.

OUTINT
This is a closed subroutine. If the

238

value (passed in R2) is equal to zero,
the character '0' is placed in DBUFFER
and the routine exits. If it is less
than zero, a rrinus sign is placed in
DBUFFER. The value is then converted
to EBCDIC and placed in DBUFFER wit~
leading zeros suppressed. The routine
then exits.

OUTFLOAT
This subroutine calls th~ library
module IHCFCVTH to put the floating
point number out under G conversion
with a format of G14.? for single
precision and G23.16 for double
precision.

OUTBUFFR
If the IOFLAG in IHCDBUG is set,
indicating the library input/output
routines are busy handling some other
user input/output request, IHCDSUG
must wait until the routines are free.
This means it must accumulate and
store its output data for the time
being. To do this, OUTBUFFR calls
ALLOCHAR--once for each character in
DBUFFER, and one final time with X'15'
to indicate the end of the line.

OUTBUFFER checks the IOFLAG. If it is
not set, it then checks the input/
~~~put corrective action switch in 
IHCFCOMH/IHCECOMH. If this switch 
indicates an input/output corrective 
action is in process, OUTBUFFER calls 
the ERR904 section of IHCFCOMH/ 
IHCECOMH to terminate execution. If 
there is no input/output corrective 
action in process, OUTBUFFR calls OUT
PUT for normal output processing. 

ALLOCHAR 
ALLOCHAR saves the data passed to it 
in 256-byte blocks of storage obtained 
by GETMAI~ macro instructions. When 
BYTECNT is equal to 251, indicating 
the current block is full, a new 
GETMAIN is issued. If no storage was 
available, an X'O?', indicating the 
end of core storage, is placed in the 
last available byte position, IOFLAG 
is set to full, and the routine exits. 
Otherwise, the address of the new 
block is placed in the last four bytes 
of the previous block, preceded by 
X')?' indicating end of block with new 
block to follow. CURBYTLC is then set 
to the address of the new block and 
BYTECNT is set to zero. The character 
passed as an argument is then placed 
in the byte pointed to by CURBYTLC, 
one is added to both CURBYTLC and 
BYTECNT, and the routine exits. 

FREECHAR 
This is a closed subroutine. If the 
current character extracted is X'),', 



indicating a new block follows the 
current block, the next four bytes are 
placed in CURBYTLC and the current 
block is freed. If the current 
character is X'O?', indicating the end 
of core storage, the block is freed 
and a branch is made to the end 
input/output exit. Otherwise, the 
current character is passed to the 
calling routine and CURBYTLC is incre
mented by one. 

OUTPUT 
If DSRN is zero. the SYSOUT unit 
number is obtained from IHCUATBL +6. 
A call is then made to the initidliza
tion section of IHCFIOSH/IHCEFIOS. 
Upon return, OUTPUT transfers DBUFFER 
to the IHCFIOSH/IHCEFIOS buffer, and 
calls the write section of IHCFIOSH/ 
IHCEFIOS. If IHCFIOSH/IHCEFIOS indi
cates an input/output error, IHCDBUG 
iqnores the n:>~;t of the curn.>nt DEBUe. 
reque"t .• 

Every compiler-generated program ends 
with a branch t.o thf' FSTOP s('ction of 
I HCFCOMHI IHC[cot-1H. Thi s ~;f·ct ion i~; i'! t_f'r

minatlon procf'rlure that: 

• puts the return code passed it into 
register 15. 

• if extended error handling has been 
specified, calls IHCERRM t~ have the 
error summary produced. 

• calls IHCFIOSH/IHCEFIOS to close 
sequential files (IHCFIOSH/IHCEFIOS in 
turn calls IHCDIOSE/IHC'EDI(J~; to close 
any direct access filp~). 

• deletes IHCAOJST, if it has heen 
loaded. 

• cancels the SPIE, restorinq the old 
PICA if there ~as one. 

• either 

a. cancels the STAE and returns to the 
supervisor if IHCSTAE has not been 
loaded (i.e., no abnormal termina
tion has been scheduled) 

b. cancels the STAE and issues· an 
ABEND macro instruction if entry is 
from IHCST.-·E 

The above termination procedure is used 
both for the normal end of load module 
execution and for most instances of 
library-initiated premature termination. 
The only exceptions occur in IHCSTAE, 

when control is some:imes r.eturned directly 
to the superVisor, bypassing the above 
procedure. 

r----------------------~----------~-------, 
,Unit number (DSRN)! I ! 
Ibeing used for curr'~nt I I I 
loperation I n 1 x 16 14 hytpsi 
.--------T-------T--·----..L-T---------+----·---~ 
i ERRMSG I READ I paINT I PUNCH I I 
1 DSRN2 I DSRN3 I D.;RN&t I DSRN5 14 bytes I 
~--------..L-------..L-------..L--------+-------~ 
IUBLOCK01 field 6 14 bytP~'1 
~--.---------=~ ~------------------1-·-- ····-1 
IDSRN01 default valu2s 7 I' b."t.<! 
t------------------- ---.--------------+ .--~- -. ~ 
ILIST01 field 8 14 bytP~,! 
~-------------------. ------------_ .. _+--- - .. - ~ 
I I , 
I I I 
! I 
,-------------_._-------------- .. __ .. _._+.- - ! 
I UALOCKn fie ld 6 I /j hyt: f',; I 
r--------------------------- -------+--.- .. -. - ~ 
IDSRNn defrlult values 7 18 byte:: I 
.-----_._------ -------------_. ------+_._- -- --~ 
ILISTn fieldS 14 hytf'si 
~-------------------------~-------..L-------~ 
11n is the maximum number of uni ts that I 
I can be referred to by the FOHTRAtJ LOA:) I 
1 MODULE. The size of thp l1ni t_ t.1hlf' is I 
I pqual to (~ • n x lb) bytp~. I 
12Unit number (DSRN) of error output I 
I device. I 
,3(Jni t number (OSRN) of input df?vice for <'\ I 
I read of the form: READ ~,lis~. I 
I &tUn it number (DSRN) of out.put dev.i ce f or I 
I a print operation of th€ form: PRINTI 
I Q, list. I 
15Unit ",Imber (OSRN) of output device fori 
I a punch operation of the form: PUNCH I 
I !!, llst. I 
leThe UBLOCK field contains pjther <'\1 
I pointer to the unit block constructed I 
I for unit n'~her n if the unit is being/ 
I used at object time, or a value of 1 if 
I the unit is not being used. 
17This field contains DCB default values, 
I which are inserted into the DCB if the 
I user does not supply them. They are 
I detailed in Figure 19. Only IHCFIOSHI 
I IHCEFIOS qets its default values from 
I Lhis field. 
laIf the unit is defined as a direct 
I access data set, the LIST field contains 
I a pointer to the parameter list that 
I defines the direct access data 3et. 
/ Otherwise, this field contains a valuel 
I of 1. I L _________________________________________ J 

Figure 18. IHCUATB~~ The Data Set Assign
ment Tatle 

Appendix F: Object-Time Library Subprograms 239 



Table 13. DeB Default Values 

r------------T-----------------------------------------T--------------------------------, 
I I sequential Data Sets I Direct Access Data Sets I 
I ~--------T--------T---------T-----T-------t-------T----------------T-------~ 
I I I , " I I LRECL or I , 
I ddname I RECFM1 , LRECL~ , BLKSIZE I DEN I BUFNO , FECFM I BLKSIZE I BUFNO I 
~------------t--------t--------t---------t-----+-------t-------t----------------+-------~ 
I FT03Fxxx , U I ,800 I 2 I 2 I FA IThe value I 2 I 
I I 1 ) " 1 ,specified as thel I 

·1 FT05Fxxx I F I 80 I 80, 1 2 1 F lmaximum size of ~ 2 , 
I 1 I 1 'I I 1 a record in the 1 I 
I FT06Fxxx I UA I 132 I 133 1 1 2 1 F IDEFINE FILE 1 2 I 
, 1 , I " I I statelT'ent. I 1 
1 IT 07 Fx x x 1 F 1 80 , 80 1 I 2 1 F I I 2 I 
I 1 1 1 1 1 1 1 I I 
, all others I U I ,800 1 '} 1 2 1 F , I 2 I 
t------------~--------~--------~---------~-----~-------~-------~----------------~-------~ 
1 1For records not under FORMAT control, the default is VS. I 
I~For records not under FORMAT control, the default is 4 less than shown. 1 
l _____________________________________________________ ---------------------_____________ J 

1 1 
<----- 2 bytes -----> <----- 2 bytes -----> <- byte -> <- byte -> <----- 2 bytes ----- __ > 
r--------------------T---------------------T----------T-----------T----------------------, 
, not used , BLKSI ZE 1 RECFM I BlJFNO, LRECL I 
l ____________________ ~ _____________________ ~ ______ ----~----------~--------------- _______ J 

Fiqure 19. DSRN Default Value Field of IHCUATBL Entry 

r------------T---------T---------------T------------T------------, 
I ABYTE 1 BBYTE 1 eBYTE 1 DBYTE I q bytes 1 
r------------~---------~---------------~------------t------------~ 
I Address of Buffer 1 I 4 bytes 1 

r---------------------------------------------------t------------~ 
I Address of Butfer 2 1 q bytes I 

r---------------------------------------------------t------------~ 
I Current buffer pointer (Note) 1 4 bytes I 

r---------------------------------------------------t------------~ 
I Record displacement (RErPTR) (Note) 1 q bytes I 

r---------------------------------------------------t------------~ 
I Address of last OECB I q bytes 1 

r---------------------------------------------------f------------~ 
I Mask for alternating buffers 1 q bytes I 

t---------------------------------------------------f------------~ 
I DECBl ske leton section 1 20 bytes 1 
r-------------------------T------------T-----------t------------~ 
1 Logical record length 1 Not used 1 LIVECNTl 1 q bytes 1 
~------------------------~------------~------------f------------~ 
1 DECB2 sk€ leton sect ion 1 20 bytes I 
r-------------------------T------------T------------t------------~ 
1 Work space I Not used I LIVECNT2 1 q bytes 1 
~------------------------~------------i------------f------------~ 
I DCB skeleton section I 88 bytes 1 L ____________________________________________________ ~ ____________ J 

Figure 20. Format of a Unit Block for a sequential Access Data Set 

240 

Housekeeping 
Section 

Note: Used only for 
varIable-length 
and/or ~locked 
records 



• ~BYTE. trhis field, containing the data 
set type passed to subprogram IHCFIOSH/ 
IHCEFIOS by IHCFCOMH/IHCECOMH, is set 
to one of the following: 

FO -- Input data set which is to be 
processed under format control. 

FF -- Output data set which is to be 
processed under format control. 

00 -- Input data set which is to be 
processed without format control. 

OF -- Output data set which is to be 
processed without format control. 

• BBYTE. This field contains bits that 
are set and examined by IHCFIOSH/ 
IHCEFIOS during its processing. The 
bits and their meanings, when on, are 
as follows: 

o -- exit to subroutine IHCFCOMH/ 
IHCECOMH on input/output error 

1 input/output error occurr~d 

2 current buffer indicator 

3 not used 

4 end-of-current buffer indicator 

5 blocked data set indicator 

6 variable record format switch 

7 not used 

• CBYTE. This field also contains bits 
that are set and examined by subroutine 
IHCFIOSH/IHCEFIOS. The bits and their 
meanings, when on, are as follows: 

o data control block opened 

1 data control block not T-closed 

2 data control block not previously 
opened 

3 buffer pool attached 

" da~' ~ set not previously rewound 

5 

6 

not used 

concatenation occurring; reissue 
READ 

7 -- data set is DUMMY 

• Q~!!~. This field contains'b1ts that 
are set and examined by IHCFIOSH/ 
IHCEFIOS during the processing of an 
input/output operation involving a 
backspace request. The bits and their 
meanings, when on, dre as follows: 

o a physical backspace has occurred 

1 previous operation was BACKSPACE 

2 not used 

3 

4-5 

end-ot-file routine should retain 
buffers 

not used 

6 END FILE followed by BACKSPACE 

7 not used 

• Address of Buffer 1 and Address of 
Buffer 2. These fields contain poin
ters to the two input/output buffers 
obtained during the opening of the data 
control block for this data set. 

• Current Buffer Poititer. This field 
contains a pointer to the input/output 
buffer currently being used. 

• Record Offset (RECPTR). This field 
contains a pointer to the current log
ical record within the current buffer. 

• Address of Last DECB. This field con
tains a pointer to the DECB last used. 

• ~~~ __ for __ ~!!~r~!!~g_~~ff~. This 
field contains the hits which enable an 
exclusive OR operation to alternate the 
current b~ffer pointer. 

DECB SKELETON SECTIONS (DECBl AND DECB2): 
The--DECB-(data-even~controI-block)-skele-
ton sections are blocks of main storage 
within the unit block. They have the same 
format as the DECB constructed by the 
control progrdm for an L format of an 
S-type READ or WRITE macro instruction (see 
the publication !~~ __ §ystem/360 Operating 
~2!~!!U.. Super'visor and Data Management 
Macro Instructions, Order No. GC28-66"7). 
The various fields of the DECB skeleton are 
filled in by subprogram IHCFIOSHi the com
pleted block is referred to when IHCFIOSH 
issues a read/write request to BSAM. The 
read/write field is filled in when the OPEN 
macro is being executed. 

~qical_Re~Qrg_~£!!qth: This is the LRECL 
of the current data set. It is inserted by 
IHCFIOSH/IHCEFIOS during its open exit 
routine. 

These fields 
input/output 

Appendix F: Object-Time Library Subprograms 241 



operation performed for the data set is 
unchecked. (A value of 1 indicates 
that a previous rea~ or write has not 
been checked; a value of 0 indicates 
that the previous read or write opera
tion on that DECB has been checked.) 

• Work Space. This field is used to 
align the logical record length of a 
variable record segment on a fullword 
boundary. 

DCB: The fields of this skeleton for DCB 
are filled in partly by IHCFIOSH/IHCEFIOS, 
and partly by the system as a result of an 
OPEN macro instruction by IHCFIOSH/IHCEFIOS. 

r-------T-------T------T------T-----------, 
I I I not I not I I 
IIOTYPE ISTATUSUI used I used I 4 bytes I 
~-------~-------~------~------+-----------~ 
I RECNUM I 4 bytes I 
~-------T---------------------+-----------~ 
ISTATUSAI CURBUF I 4 bytes I 
~-------~--------------------+-----------~ 
I BLKREFA I 4 bytes I 
~-------T---------------------+-----------~ 
ISTATUSBI NXTBUF I 4 bytes I 
~-------~---------------------+-----------~ 
I BLKREFB I 4 bytes I 
~-----------------------------+-----------~ 
I DECBA I 28 bytes I 
~-----------------------------+-----------~ 
I DECBB I 28 bytes I 
~-----------------------------+-----------~ 
I DCB I 104 bytes I L _____ ----____________________ ~ ___________ J 

Figure 21. Format of a Unit Block for a 
Direct Access Data Set 

The meanings of the various unit block 
fields are outlined below. 

IOTYPE: This field, containing the data 
set type passed to subprogram IHCDIOSE by 
the IHCFCOMH subprogram, can be set to one 
of the following: 

FO input data set requiring a format 

FF output data set requiril"lg a format 

00 input data set not requiring a 
format 

OF -- output data set not requiring a 
format 

STATUSU: This field specifies the status 
of the associated unit number. The bits 
and their meanings when on are: 

242 

Bit Meaning 
o data control block for data 

set is open for BSAM 

Bit 
1 

2 

3 

4-5 

6-7 

Meaning 
error occurred 

two buffers are being used 

data control block for data 
set is open for BDAM 

10 U format specified in 
DEFINE FILE statement 

01 E format specified in 
DEFINE FILE statement 

11 L format specidied in 
DEFINE FlLE statement 

not used 

Note: Subprogram IHCDIOSE refers only to 
bits 1, 2, and 3. 

RECNUM: This field contains the number of 
records in the data set as specified in the 
parameter list for the dat~ set in a DEFINE 
FILE statement. It is fjll~d in hy the 
file initialization section after the data 
control block for the data set is opened. 

STATUSA: This field specifies the status 
of the buffer c\lrrently being used. The 
hit~ and their mpanings when on ~re: 

Bit Meaning 
--0- READ macro instruction has 

2 

been issued 

WRITE macro instr\lct~on has 
been issued 

CHECK macro instruction has 
been issued 

3-7 not used 

CURBUF: This field contains the address of 
the DECB skeleton currently being used. It 
is initialized to contain the address of 
the DECBA skeleton by the file initializa
tion section of IHCDIOSF after the dat~ 
r.nntrol block for the data set is opened. 

BLKREFA: This field contains an inteqeT 
thar-rndicates either the relative positl0n 
within the data set of the record to be 
read, or the relative position within the 
data set at which the record is to be 
written. It is filled in by either the 
read or write section of subprogram IHC
DIOSE prior to any reading or writing. In 
addition, the address of this field is 
inserted into the DECBA skeleton by the 
file initialization section of IHCDIOSE 
after the data control block for thp data 
set is opened. 



STATUSB: This field snecifies the status 
o~~ next buffer to be used if two 
buffers are obtained for this data set 
during data control block opening. The 
bits and their meanings are the same as 
described for the STATUSA field. However, 
if only one buffer is obtained duri~g data 
control block opening, this field is not 
used. 

NXTBUF: This field contains the address of 
the -oECB skeleton to be used next if two 
buffers are obtained during data control 
block opening. It is initialized to con
tain the address of the DECBB skeleton by 
the file initialization section of subpro
gram IHCDIOSE dfter the data control block 
for the data set is opened. However, if 
only one buffer is ohtained during data 
control block openinq, this field is not 
u~>pd • 

b I..:XREFB: The contents of this f i~' ld are 
• [If> Rdl!1(-' n S ,lescr ibed for thf' BLKREFA 
+ i,-'l,i. It i~ fillerl in eithr-r by the rh.td 
nr th.' write ~)f>ction of ~,\lhprogrnm If-lCnI()~JE 

t,rior t.o any r-padinCl or writ inq. In Cldcli
~. ion, tht: addre~;s of thi~-; fi('ld is inspr-t('d 
l.ntD the DECHIl !,kf'lpton hy t tiP filp initid
lization sf'ction of IHCDIO:;r: dftpr thp rirlta 
~'-mt rel block for t toP tin t.'l Sf't i~; o{lpnf'd. 
lIowp ver, if only one hufff-'r j:; ott-Ii nt'd 
durinq delta (~ontrol t,lork (l£H'ninq, thi~; 

;iu~ 1 ~ 11!)t ll:;f'd. 

9ECBA ~IKELE'fO~: This fif'Jd contnin~; th(' 
DECB (ddla pvent contlol hlock) !;k('letnn to 
be u~ed whrn reading into or writ inq from 
the current buftpr. It i:-, the Scirnt' form dS 

the DECB constructp:~ hy th(' control program 
tor an L form of an S-typf' READ or WRITE 
rnr-'cT,,:n:,trIlCric.1 n llnr1f>r BfJAM (~)pp ttlE' putJ
li('at 10n Ir-M~stem/3bO Op!..'rdtir~~ y~Jtpm: 

;>':~l2!.~ r v 1 ~o! _~~i ___ _ Da t ~_!ia n ~g emen t Ma c r 0 

l!L::::'!J~~!::~~!!.~, (jrder No. (jC2A-b647). 

Ttl .. ' various t if'1(~8 of tile DECRA skeleton 
rire tilled in by the file initialization 
~ect ion of s ubprog ram IIICDIO;,E d f t er the 
ciata c:c'ntrol block for t tH' cia ta spt is 
n[)pnpd. Thf' completJ>d DEcn i~; rpfprred to 
Wh"~T1 lHCDIOSE i~lsues a read or'] write 
rt=q'J(~st to BDAM. For each input/output 
opl'ration, IlICDIOSE supplies IIICFCOMH with 
the addless of and the size of the buffer 
to be used for the operation. 

DECBB SKELETON: The DECBB skeleton is used 
when--rPading into or writing from the next 
buffer. Its contents are the same as 

described for the DECBA skeleton. The 
DECBB skeleton is completed in the same 
wanner as described for the DECBA skeleton. 
However, if only one buffer is obtained 
during data control block opening, this 
field is not used. 

DCB SKELETON: This field contains the DCB 
(data control block) skeleton for the asso
ciated data set. It is of the same format 
as the DeB constructed by the control 
program for a DCB macro instruction under 
RDAM (see the public~tion !~~ Syst~~l~Q 
oper~tin9-_§y~te~~_--2~Eeryi~Q~_ and Data 
~~~~g~~~n~_~~£r2_!~~~ruct!2n§)· 

<----------------8 bytes------------------>
r---,
I PREFACE I
.---~
IEntry for library error condition 207 I
~---~
IEntry for library error condition 208 I
.--------------------------~--------------~
IEntry for library error condition 209 I
~---~
I I
I I
I I
~---~
IEntry for librilry f'rror- condition 300 I
~---~
IEntry for library error condition 301 I
t---~
IOrtion~l entry for user error condition I
I 102 I
~---~
,Optional entry for user error condition I
I)03 I r -- --------------------;; --------------------,
, I
I ,
.---i
IOptional entry for user error condition ,
I n-1 I
t---~
IOptional entry for user error condition I
'n (Note) I
.---i
INote: The user can specify from none tol
,---- 598 of his own error conditions; I
I thus n can be a maximum of 899. I l ___ J

Figure 22. General Form of the Option
Table (IHCUOPT)

Appendix F: Object-Time Library subprograms 242.1

1 1 1 1
<---------------- 4 bytes ----------------> <- byte -> <- byte -> <- byte -> <-- byte __ >
r--T----------T----------T----------T-----------,
I Field One I Field I Field I Field I Field I

I I TwO I Three I Four I Five I
L __ ~ __________ ~----------~----------~--_________ J

Field
One:

Two:

contents
The number of entries in the option table. This is 95 plus the total number of
user-supplied error conditions.

Bit one indicates whether boundary alignment was selected. l=yes; O=no.
o and 2-7 are reserved for future use.)

(Bits

Three: Indicates whether extended error handling was selected. X'FF'=noi X'OO'=yes.

Four:

Five:

Contains a decimal 10. This is the number of times the boundary alignment error
message will be printed when extended error handling has not been specified.

Reserved for future use.

Figure 23. Preface of the Option Table (IHCUOPT)

1 111
<- byte -> <- byte -> <- byte -> <- byte -> <-------------~-- 4 bytes ---~-------- ______ >
r---------T----------T----------T----------T--,
I Field I Field I Field I Field I Field Five I

lOne I Two I Three I Four I I L _________ ~ __________ ~ __________ ~ __________ ~ __________ -------------_____________________ J

Field contents
One: The number of times the library should allow this error to occur before

terminating load module execution. A value of zero means unlimited occurrence.
(Trying to set the field to greater than 255 results in its being set to zero.)

Two: The number of ti~es the corresponding error message is to be printed before
message printing is suppressed. A value of zero means no message is to be
printed.

Three: The number of times this error has already occurred in execution of the present
load module.

Four:

Five:

Bit 0--

1

2

3

4
5

6

7

~~ninq
If control character is supplied for overflow lines, set to 1.
If control character is not supplied for overflow lines, set to O.
If this table entry can be user-modified, set to 1.
If this table entry cannot be user-modified, set to O.
If more than 255 errors of this type have occurred so that 255 should be
added to Field Three, set to 1.
If less than 255 errors of this type have occurred, set to o.
If buffer contents is not to be printed with error messages, set to 1.
If buffer contents is not to be printed, set to O.
Reserved for future use.
If error message is to be printed for every occurrence, set to 1.
If error message is not to be printed, set to O.
If traceback map is to be printed, set to 1.
If traceback map is not to be printed, set to O.
Reserved for future use.

The address of the user's exit routine. If one is not supplied (in other words,
if library is to take its own standard corrections), the final bit is set to 1.

Figure 24. composition of an Option Table Entry

242.2

1 1 1 1
(- byte -) (- byte -> <- byte -> <- hy~e -> <~~~~~=~~~------- 4 bytes _____ ~~~~~ ________ >
r---------T----------T----------T---------T---------------------------------------_____ ,
I Field I Field I Field I Field I Field Five I
lone I Two I Three I Four I I L _________ ~ __________ ~ __________ ~ __________ ~---___ j

;i~ld---;~~~~~~;---

One·. _f"'_~_.L_ .L_~_ 10, ~y,_~p_"0t" __ fl""! ___ Y t:> __ r_Yn __ Y_c: _?OR,- _?1,O, _::I.T"I." __ ?1,_~, ,rl-..,,..l-. "' ___ " "I " '.L 0' ~_r TlJ _ - ~ ~ _ _ ."11." ... ,, """',," ~ '- ,;;;;)~'- '-v v \un.J..~In~Lea),

and for errors 217 and 230, which are set to 1.

Two: Set to 5, except for error 210, which is set to 10, and for errors 217 and 230,
which are set to 1.

Three: Set to o.

Four: Bit
-0-

1
2
3
4
5
6
7

setting
o
1, except for errors 230 and 240
o
o
o
o
1
o

Fi ve: Set to 1.

Note: These system generation values are also inserted initially into any user error
entries.

Figure 25. Original Values of Option Table Entries

Table 14. IHCFCOMH/IHCECOMH Transfer and Subroutine Table

r---------------T---------------T---,
I Displacement I Branches to I I
I from IBCOM# I Section I Function of Routine I
t---------------t---------------t---~

o
4
8

12
lb
20
24
28
32
36
40
44
48
52
56
64
68

.FRDWF
FWRWF
FIOLF
FIOAF
FENDF
fRDNF
FWRNF
FIOLN
FIOAN
FENDN
FBKSP
FRWND
FEOFM
FSTOP
FPAUS
IBFINT
IBEXIT

opening section, formatted READ ;
Opening section, formatted WRITE I
I/O list secLion, formatted list variable I
I/O list ~ection, formatted list array I
Closing section, formatted READ or WRITE
Opening section, nonformatted READ
Opening section, nonformatted WRITE
I/O list section, nonformatted list variable
I/O list section, nonformatted list array
Closing section, nonformatted READ or WRITE
Implements the BACKSPACE source statement
Implements the REWIND source statement
Implements the ENDFILE source statement
Write-To-operator, terminate job
Write-To-Operator, resume execution
Load module initialization
Load module termination

l _______________ 4 _______________ ~ _____________________ ----------------------------------

Appendix F: Object-Time Library Subprograms 242.3

Chart GO. IHCFCOMH/IHCECOMH (Part 1 of 4)

FRDWF

·····Al·······.~· · . • SET IOSWF FOR •
: FORMATTED INPU':: · . ••••••• •••••••• II" •

I ···.·11·.·····.·.
• 0: • SAVE END- AND •
:!RRa ADDRESSES : · . •• ••••• •••••••• f,

1
, "

• C1 " " :~~~~i" :
" DIRECT '0 YES .-.-.-.-.-.-.-.-.

" ACCESS DATA, ,-------->. OPEN I1F •
" SET " • NEEDEDI AND

, • • READ •
'. .' ••••••••••••••• t •

• HO

I
1

•••• '01' •••••••••
'FIOCS' •
1-1-1-1-.-1-1-1-1

OPEN IIf •
NEEDED I AND ~;~ :

1 <- - - -- ----------------

••• "[1' •••••••••
t •

SAVE BUffER •
INfORMATION

fWRWf
••••• Fl" •• , ••••• · . • SET J ()~WF FOR ,

<- - - -- - - - - - - - - - - --- ------------- -----------. fOMMATTt:O •

1
Gl ,'. •• ••• G2 ••••••••••

• • • • • SCAN FORMAT •
.: '08ir,~~;JIME.: .~9 ______ >:si~r~~~b~~tbL :< __

'0 " "'SPECIFICATIONS • '. '. .' ,
• YES

I
, " 1

H2 • 0 . . '. : •••• H1 ••••••••• :

• TRANSLATE • ,. rIRST " rIO
FOR""'T .----- " CONVERSION ,.---

INf"nRMATIOH • " CODE o. '. . .
'. .'

r~
····J2········ . "RETURN TO MAIN'

: PROG :

• ()UTPUT ·

f'RONF · ····A"·········· · . : ~~-~'1=ITf~~ :
• INPUT •

FWiWF ·"S········ .. · . • SET IOSWF rOR •
• NON-FORMATT"O •
• OUTPUT • .: ,.. .

........ r::::::::---------::::::::i , ...
••••••••••••••••• • •
• .AVI IND- AND'
'IRIl- Al)oRESSES •
; .. ·

1
o • 0

Cit " ••••• es •••••••••• o. . 0 'DIOCS. •
o • 01 RECT • 0 Yl.!; • -. -. -. -. -. -. -. - •

'0 ACCESS DATA 0 .-------->. OPEN !IF •
" SET " • Nl:.£O~D) AN::) • " o· • Rl:.A()/W~Ill:. • '. .'

• NO

1 · ····0"·········· 'flOCS' •
t-I-I-I-I-I-I-I-I

OPEN I IF'
NEEDEDI AND •

• R!::AD/WRITE •
1< ------------- -----------

· ····E .. ·········· I • • ••• 1::'), ••••••••
:;AVE BUFfll< • 'kETUI<N TO Mid Ii •

, INFORMATION :-------->: PI<OGRM: • · ·

Appendix F: Object-Time Library Subprograms 243

Chart GO. IHCFCOMH/IHCECOMH (Part 2 of 4)

FENOF FENON ••• ··A.l···· •••••• • •••• A2 •••••••••• · .. . · .. . 'SET 1/0 SWITCH' 'SET 1/0 SWITCH _ · -
........ c:::: :---------::::::: T

v . '. . '.
B1 82 ' •

• • '. •••• • ••• 83" ••• I •••
• ' o. READ • • '. 'lES' •

'. RlAD ,,~ WRITE. .--------> •• DIRECT ACCESS •• -------->ORETUYlN TO MAIN'
'.' .' . '. . . '.'

'r~~ j '. .' .. WRITE

• L1

..... C2.t........ j
• FlOCS' • '-'-1-1-'-1-'-'-' · . --- •. _------------
: CLEAN-UP

.... ·02······· t
••

'OloeS' •
• f'. J.~"'> ~-e-.-t-*_$-;,_.-t

'. G1REC1 ACl·rss. ,---- ----). PUT OUT f1N.a.L '
, • • AUFH.R • . . .

..... " .1.'::.... . j
: ~ ; ~.'. ~.: •• _ • _ • _. _ : •••• F:)' •••••••••

: P!'TBg~;!~INAL : .. _ .. --->:RETURN Te; MAIN:

t I' LN Fl·········· , ,
, .
: ,n J/, :.I,II1("H :

I
!.
v

...............

nOAH r'·········· · .
~ET ARRAY

SIoIITCH

". G]' '. • •••• G .. • •• t ••• t •• .'.
~1

• ". °DIOCS' °
i~ ~k 1 Tt: • ~~~~ - - - - ')': Bo' UFffR EMPTY'o:' ~:: __ - - - >.: ~o I RECT ACCES~o:' ~~~ _____):. -. _t -. -t _f -. -.-.

FIU.SH READ

I
t
'.

· '~"lF"'E:~ FllLL •.
Yf;

'.
• Nu , .. , I · ,

• J1 .- >
• 0
••••• Jl •••••••••• · . 'MuvE LI~;1' ITEM 0
: I tlTU BUfFER 0

j
•••• J(1.· · · .

:RE.TURH TO MAIH :

yf.',

,
, NO

t
'. .. . : :

••• NO j
I ::::> .

• H14 •
o • H].......... HIl

0FIOCS' • • MOVE CORRECT °
0-"-0-'-'-'-0-0-0 '.\MOUNT Of' DATA °

o--_·----->.rROM BurFER TO •
FRESH ~EAD 0 • LIST ADDRESS •

.'. J'2 ••••• J 1" •••••••• I
o o. 00lOCS. •

_ 0 o. 'lES 0-0-0-0-'-'-'-'-'
-->o.DIRECT ACCESS.o-------->o WRITE OUT •

o 0 0 BurFER 0

.
l 000.

o 0

->. Jl 0
o 0

o
l

o •
- >, J 1 •

• ••• -1
-RETURN TO MAIN'

Appendix F: object-Time Library Subprograms 243,1

Chart GO. IHCFCOMH/IHCECOMH (Part 3 of 4)

FSTOP . ".
11.1 ".

. • I.
• "LOAD MODULE •• NO 0 •

o. I N FOREGROUND. 0 ________ >. ISSUE WTO MACRO. . .' . . '. . . .
I •• ' •••••••••••••••••

• rES

1
: •••• 81' •••••••• :

MESSAGE TO
TERMINAL

1< -------------------- ---
•.•• ·ct'··· ••••••
'I8EXIT •
1-1-1-1-1-1-1-1-1

TERMINATE •
EXECUTION

"

I
••• '01 • ••••••••

• RETURN TO •
: SUPERVISOR

HOLF HOAF .. ···f2.···.····. F) · .. .
• 3r'f UP' • ~lT ARRII '(
'PARIIMt:TEkS FOR .<--------. SWITCH vN
: CONVERSION: :

1 ·•·· .. G2···· ••••••
• I HCfCVTH •
1-'-1-1.1-1-•• 1 ... ,

• CONVERT AND •
: MOVE DATA :

FPAUS .' •
All '. • ••• lAS •••••••••• . ' '. . .

• 'LOAD MODULE'. NO • ISSUE WTOR •
'. IN FOREGROliND •• -------->. MACRu • '.

I. .' • • ' .. '
i'''

: •••• 8 :

• MESSAGE TO
• TERMINAL

.................
1 <---- -- -- - ---- ------- ----

·····c .. ······ ... · · . · . :WAIT FOR REPLY :

·
j

• ••• 11..)&1 1 •••••••••

:~lTUMN Tv 1'111.1,4 :

1 r-·- --- ---- --- -- -- -- -- ---1 "'
H2· t... • •••• M).......... tt" • t .

243.2

. t.. • • . •
• :'R£~~~ioN .:.~------>: Mt5UI'IE SCII" :-------->.: "cUN~~~~lON ':.

'. '. . •• • : : '. '. coot. .•.• '. .'

. F:-------------- -- -- --------- --------- -- -- -- -- -- j '"
····J2········· .RETURN TO MAIN •

• PROGRAH • ·

Chart

rWWND
~ BKSP
HOPM

GO.

•••• tA., ••••••••••

: ~ l ~~~: -. _. _. -. _:
.IMPLt:MENT AKSP,.
• f<l,.jIND, UK • ... ;~;:~~;~:~~ ...

I
··.~f:i,2~··· •. ·~· .

:~lTlIW/ Tu MAIN:

IHCFCOMH/IHCECOMH (Part 4 of 4)

1
: •••• b4 •• • •••••• :

.................
1

•••• ·C4 ••••••• •••
·floeS' • t-t_t_t_t_t_t_.·t

• OPEN OBJEC1 •
ERf<OR UN! T •

I
••• 'L~"""'" . .

:l-lTUMt< Tl, MAl./ :

IBlXIT
• ••• tA~"""""
:~~~;~~~.-.-.-.-: . .
: EkRC)k SUM~,"RY :

1 : ····e '). · · :
.PELETt: i'iCo.llJ:,1°
: I f LOAD, 0 •

I v
: •••• L,") •••• ··.·.:

.CANCt.L ~·Plt. ANU·
t : 1 Ar •

J
•••• 1-., •••••••••

I-ot·!IJ ·i
liP! «v I

Appendix F: Object-Time Library subprograms 243.3

Chart Gl. IHCFIOSH/IHCEFIOS (Part 1 of 2)

• ••• 'A 1 ••••••••••
OETEIIMINE OPEIlIITI'lN -!'(PI:. NOTE:

INITI1U.ItATION "ltilT
REI\D j' fl<EAO
WI<ITI:. fRITE

fl'!{~:'· :-------------->

....
o 0

° Cl ° o 0

F'INlT 1 •••• 'el ••••••••••
o
o •
OOfTI'RMINE O~;RN • ·

.0.
01 . . '.

NO •• DSRN ZERu ••
---0. OR NE(,ATIV!:. .0 . .

O.

I
.. .

YES

••••• E\ ••••••••••
°IHCEK~M • · -. -. -. -. -. -. -. -.
• fMIIOIl I'!lS~AG[0
• IHC no I •

o
L----- ~::::::::
: I F EXTENDED
o EMOII HANDLING
: I S NOT PRLS ENT •
: IHCEMM ENDS
o EXECUTION L .. ______________ _

DEV ICE MAIIIPULATION FCTR L
FINAL CALL FCL(OS[
- - - - - -------- ----- - - --- -- --

FREAD • o.
C 2 •

.' WA!..i •
•• PREVluUS •• YES

•. OPERIITION A • ----1
•• loll< IT, .0

'. . .
'. .'

• NC) ••••

. ..
01 . . '.

.
o ~ 1 •
o •

• • /\NY M(D~, IN.. YES
o _ BLuC~ TO III •• ----

to ~FH.)f.'ES:lE~ ••

• NO

j
. E2····· .. ····
• IIlAO N~ Xl
• IIEcuRD IN1u
• THI~ l\'lrrE.". •
• "wITCH r.UH~~ •

: •.• ~~!~r;:~ :

I r.2·········· o •
.CH£C~ I'IE:>IJ~' OF.
.~[AD INTu oTHr~·
• BlJfn.~ •

l .. O. . .
- >' t< 1 •

FlIITE ...
C) o.

o
•• OUTPtrr •• NO

•• BlJff!:.1< FULL •• ---1 '. . .
to 0'

'. .'
• yt::. •••••• j : '" :

·····0]'······· .. 0WRITl ~'()NTENT:; •
oOF THI~, ~UfllM •
• r,WITln BUFrE ...
• POIN1ER!.. •
o •

I
: •••• t , ••••••••• :

'C'HE(I-' i'<'" ULT I.Jt·
• 1IfIf(11 ~ .. ~! 1M •
• \;1 tt~ H !111Ft f jo(•

...

FCTIIL · ... ·e"······· ... o 0

oCHECJ(STIITUS or.
• UNIT •

.1.. . .
: Cl :

. .
: Gil :

t

rCLu::; · ... ·c'J·········. · .
• CHEC~ ANY •

__)0 uUTSTANDINC; •
: INPUT 01'1 CJUTPIJ1:

j
. ..

.l,..lJ ..
NU .. -- _. LAST OSkN • 0

'.
• YlS

j
.... F~·······.· · . RETURN ·

•••• f°'> •••• , ••••
• TU ADDRESS •
• "PECIFIED I~ .<--
• ~~~:. ~~~~H~~. •

. '. . ' . , c.l to ••••• ~} ••••••••••

l ·IHCERRM·
G j GC4 GS

• I;) • • I '. • • '.
.' DS~N FOM '. YE.:1 .-,-.-.-.-.-.-.-. .' ('UltI.E.NT • YE~, .• HA!.. AN EuF .0 YE .• IS THEilE IINO. YES

--> •. DIFIECT ACCE.S~,. 0- .. _----->. [RieUR "'f:;:';A(,E •
• • • I He: ill I • • _ D!:.VI! t. .• ->.. uPt.AATION • ·---1 • IIEfN RlAO •• -------->·.END P MlTER •• ---

•• •• SPlCIFIlO.·

244

.
• NU

j
: •••• Hl ••••••••• :

BUILD UNIT
BLOC~ (If

NECESS Y I

1 ·····Jl·········· • OPEN DATA •
• CONTIIOL BLOCt- •
• FO .. DArA SE1 1 F·
0NOT PIIEVIOUSLY •

: •••• ~~f~~~ ••••• :

j
,0.

t(1 •• . . "
•• DCB OPENED •• YES

., PROPEIILY •• -----'. . .
" .' '. .'

• NO

~
-02 -
• • H~.

·

•. MANIP.· . . '.' , ... , .. , .. . '. .' '. .' '. .'

I
l • Nt) ••••• • NU • NU . .
-). tc ~ •

lUi •

· . 0:' 1
• 0
• Hit '-.> · r--------------- H j •• H" o.

: I F EXTENDED • • ••
oEIIIIOII HANDLING • •• \oil< ITf •• I/U [RRvll •• YES
:IS NOT PJU;SENT. ..~t.Ar; uk WMI~~ ••. -------) •••• IN IuS •• ··---1
: IHCEIUIM ENDS .• ••• •
o EXECUTION •• •• o. • 0

C_ ---------- ---- i "'" 1:!: >- > i "" ::~;:
SlT~~rr~J1 •• ,....... jeR]) l.......... f'IO:~l •• J

• o. • 0 P~_S" CU""t.N1 •
• D!:.'TEIU'IINt:.. 0 .~lCOMf) P0INTt.r< •

r-->: ~~~O~EO~~~~T .----- • REIID A BWn • : ,,~~~ .. 5~i~~~H :
• O. 0 TU CAl.Lt.1< •

=::::=->l I
INVEllr

• ••• eJ(1 ••••••••• I
: I~~"6[~~~ff~S : ••••• I<~ ••••••••••

:DAT~u~nH~gUBLE: : II!TUJlN : ·
! · .

• Gil • ·

j
·····HI)·········· • IHeERRM • . -......... -.-.-.-.-.
: EAII~r.c'1f~fAG[:-.-.................
L--------------: IF UTEMDf!D
:naoa IIAIIDLIJIG

t II MOor ''''I!M'T.
: IHca ... IHDB

L __ ~~~~~ ___ _ · • It!! ---I · .
.. ··It~········· • ~ITU." fO •

: CALL~r~iT Ell IIOR: < - -.

Chart Gl. IHCFIOSH/IHCEFIOS (Part 2 of 2)

•••• " 1*' •••••••
• ISSUE ERROR • • RETURN ABORT •
'MESSAGE IHC21!1I' -------->:CODE TU IBC-OM' :
: TO CONSOLE: •••••••••••••••

" :~;. • I
• 02 • :.:: .. --~ L::- '-1 l

B1 '0 ••••• B2 •••••••••
EOFM CTLRTN 0 " RWND

: •••• 8] ••••••••• : . ,84 10
10

: •••• 85 ••••••••• :
, 'CURR!NT' 0 • l' EXTENDED •

o' UNIT TH! " Y!S '!RJlOIt HANDLING •
" ~~J!5~IfRRO~. 0 .------ -->: PR,g!~Zh~~~s SW:

• WRIT! LAST t EOF o' DETERMINE " f..rw • ISSUE CLUSE •
• RECORD *<--------'. uP£~ATION •• --------~. WITH REl<i..A~ *

• 0 0 • • ERROR SIJMMAAY • • : '0. 0 1YPl ,.'. : OPTION :
'. .' ••••••••••••••••• '. .' ••••••••••••• II ••

• NO

I ·Cl'·········
'D"TA """AGEM!NT'
• RETRY •
• APPIIOPIlIATE •
'NUMBER or TIMES'

I
,'0

D1
0' I.

" I/O ERRGR " NO

j j""
••••• e) •••• • •• ••• ••••• e" ••••••••••
• •• ISSUE •
• ISSUl cWSf • • "PP~()P~I"Tl •
• (TYPC=TI WITH • • NUMBER Of BS!' t

: LEAVE OPTION : : B~~~~~i~~r :
I D)·········· · . • fRU I/O •

j

j
••• 'C~"""'" · . • RETURN • ·

" BEEN 0 .------------

• flUffERS rOR .-----1
•••• *04 ••••••••••
• DJlI:,T Tnl •
'~lC!'TR TO POIN1'
• TO P~~CE DI N(, •
:LuGIl'AL Hflukl; : " CORRECTE!1, • . , .

'. .'
• YES

l
....
'01 •

- >' .. 14 • . .
: THIS [JAT Sf:! :

..... E]··········
-- - - --> j

•••• E4 •••• II •••• · . :~~~;~~~.-.-.-.-: • ···;~f~J;~·;7)···.
• ERROR MESSAGE "----- ---)'C"LLlR AT tMHOk' Rl TURN •
• IHC21~I' • ot'rsu • ·
l _______________ _
: IF !XTENDED
: EIUlOR HANDLIIIG
: IS NOT P~SENT,
I IHCEIUUI ENDs
: EXECUTION
&.._---------------

....
·02 •
• Hl .--! ·

" ,
H 1 '. • •••• HII •••••••• ••

,'CU~RENT', t If EXTENlJtLJ •
• UNIT THE " YES 'ERROR HANDLIN(, •

.: ~~E~~I~RRO~., • -- -- - - -- >:PRf~l~,.p~tL.;w:
.... :.~~~~~.~~~~~~!.: r I J].......... J&I •••••••••• J2......... · INC!"'" ., •

• RETURN TO' .-._._._.-t-'-'_' • ISSUE ERROR t
'CMoL!R AT £RROR.<--------. ERROII MESSAGE' 'MESSAGE IHC2191'
t OFFSET' t I HC 219 I' • TO CONSOLE •, . ·

l--------------- 1 I IF &lIT_DED

lZoo. H.UlDLUIG • ·:~;n=~·:;~:;··.
118 IIO'J' Dr!'. 'CODE TO 1 fiCO"" •
: IlleS DDS • •

, KIE'UT I 011 • • • • • • • • • • • • • • •
L ______________ _

Appendix F: Object-Time Library subprograms 244.1

Chart G2. IHCDIOSE/IHCEDICS (Part 1 of 5)

CALLS FOR DEFt NE "1 LE ,,),
• COMPILER-

GEN .. RATED •
OBJECT CODE •

\i B)*········.
·GETUAT • . -.-.-.-.-.-.-
·GET UNIT NIJMBER.~----------------l
• !OSRNI • ·

I I
b ••••• e 3 ••••••••••

• INSERT UNIT •
• NUMbER':; •
• PAkAM~ TER l.I ST •
• ADD" "-!;:"" IN UNIT.

: •• ~~~:! ~'~. r~~ ... :
:~;. · 1i
• n ~ • - ·

,.,
0] '. • ••• '0'" .••••••••

•• LAST ., • GET N~XT UN!" •
,·UNIT NUMBER., NO • NUMUlH IU:,j,NI •

" IN P""-""'ETER " - ------>.r~ol'l PARA,'lL1EI< •
• LiST ,. • Ll:;T • ,.

'. .'
• YE:",

I
• •••• ~ ! ••••••••••
• f :,TABLI~H •
·AU['kF!;:;ABI LITY •
• 1 N I tH"t'CUl'lri/ •
·lHCf("I",HFOR

: .. ~~~.;~.~-:~~~ .. :

1
•••• f \ •••••••••

• lOMI'1 U.t<- •
(,t Nt kA;t..) •

•• ~l~~;~.~~~~ •••
CONTINUE: NORI>IAI.
PH,,< f!;:,l Nt..

Appendix F: Object-Time Library Subprograms 245

Chart G2. IHCDIOSE/IHCEDIOS (Part 2 of 5)

····1.1········· · . r--O!T!RHiN!-cpi~ATioN"7i~i-' THIS MODULE IS CALLED BY
IHcrCOMH/IBCECOMH TO IMPLEMENT

• DIOCS. .--------------> READ DASREAD l-iNiiIAi:IZAriON--IOiSiHi-- j ~H~~CL:~iI¥~. READ, WRITE AND ·

DASINT ·····Cl,.····t'e .. ~ .. · . :Gn AE~H88 or : · . ·
1 .···.01·········· ·GETflAT •

--*-*-*-.-*-*-* · . • GET [lSRN • ·

j
.. ,

Jl . ' "
.: ~Illc~S~c~s;: .!!~ __

'. .' ., ,.
' .. '

WRITE DASWRITE
CLOSE DASTERM

- - - - --- ---- ----------------

....
• 02 •
• C2 .---
• • J •••• t

DASUAD __ ,., .." .. ·····Cl ... ··
•• fS RICORD •• NO .O,TAIN ADDRUS •

•• N BUrrIll •• -------->.0 IIIPlIT BU"ER.-----------------

j
'. .' . . '. ' .. '

1,:::---------------------1 .•.
,.02 ••• , : 0) •••••••• : :~~i~.::U;:~;:

,. IS TIIS A ., YES. • .RICORD NO. IN'l'O.
., ~~ND REOUES:-., ·-----1 : READ A RlCORO :<--------: Brlfl"A'?~LD :

• = • • • •• •
' .. ' r El·········· · . • CIIECK P'OR 1/0 •

: CO.u>LETION •

·
1 ·····r2·········· • PLACE BurrER •

• POI NTER AND t
• 8Ur,.p SIZE IN .----
: REGISTERS :

G2 .,
. ' '. •• fREVIOUS ., YES

__ H. OPERATION • '---1 '. .' " , .
'. .' • NO •••••

, ·0] •

1 · .~~'
GE:TUB ·····N2·········· 'COIfS1'lUCT UIIIT •

• BI,OC It , INSERT'
• ADDR or UNIT •

:ls~~..A~ ¥:F:

UAru~' 1 ·.· .. J2·.···.···· • IlIAD JOB rILE •
: (smr?LI=I&i~ : ___ __
• IIUI'1IO VALUE t
• INTO DCB •

....
·02 • : !\ ·--1

DAS~~ .. E).......... E .. ···.. £~ ••••••• ' •••
.GET ASSOCIATED , ,. t, • UPDATE ASSOC
• VAJUABLE'S. ,. IS THIS A '. YES • VARIABLE SO •

-->. ADDRESS AltO .--------> •• rIND REQUEST, .--------).TIlAT IT POINTS t
'CURRENT RECORD t •• • • TO RCo JUST •
• NUMBER • • • • READ • ·1 ~ ········1·········

..... ,.~

CIIOISP ·····S]·········· · .
• EXAMINE • -- >'JYCBIN02 YU;LD •
• IN JP'CB • ·

j ,. ,
J J .,

.' ' . •• NEW 'OAT" " YES
• SET TO BE , • -- -., CREATED,·

'. .' ' .. '

• UPDATE' •••• Y!) •••••••••
• ASSOCIATED. • RE:TURN ro •
• VARIABLE SO .-------->, CALLER •
.THAT IT POI NTS •• •
.ro NEXT RECORD • • ••••••••••••••

, -,
Git .,

.' ' .
, • " YES

-- -- >t. WRITE REQULST, .---1
'. .' '. . .

'. .' • NO

1
CRNOT ,. ,

Hit ••
, . .

FIND ,. READ 011 ••
---.,YIND REQUEST,·

'. . ' • , t

'. .'

·0) •
• B1· .. .

i "" ,----------------
• ••• 'J - - - - - - - - - • IF E.X"rI:IIDe
.1 HCERJUiI • :200. IIAIIDLIJIG
:-~ii:O:- :~S:G~ -: \ISI~.!~'
• IHC2)"I' • ----: : l ___ ~~~--__

i .., 1----------------
••••• ltl.· ••• •••• .---------. IF DTBIIOEO

• NO

l
·0] •

-). El • . . l :~:'. ->: J!> ••

• •••• 1(" ••••••••••
:!~~~~._.-.-.-: \SUOR IWIDLIIIG
• EAaOll ME8SAGE • • 18 .,.,. arr.
• I BC 2111· I IBCDJIII DItIII
: ••••••••••••••• : l' DEctJ'!'IOII 1 ----------------

.....
·Oli •
• JS· .. .

• • • ••• I<~ •••••••••
.SET f'lND SWITCH. • RETURN TO •

__ >. OYE .-------->. CALLER • · .. · , ..

Appendix F: Object-Time Library Subprograms 245.1

Chart G2. IHCDIOSE/IHCEDIOS (Part 3 of 5)

....
001 0

:.::- 0_- 1
BS,,"OPEN v

: •••• 81 ••••••••• :

• OPEN DCB FOR •
: NEW DATA SET :

o •

C'~<T' I
•••• 'Cl ••••••••••
• CR EATt AND •
'FOA""'T NEW O ... T

:Sl~I¥~I~C~6A"': ·
I

I
v

: •••• 01 ••••••••• :

o CLU~;E nt'P rOR •
• DATA ,,1:1 :

o
l:!:>-,j
••••• t 1 ••••••••••
• Jrt.N on· ruk •
• !lATA ~;l" rok •
o OikECT IIlTt:;S •
• PROCF~i:;lItl. ,

I v
•••• ert ••••••••••
• INSE~T ~ECOMO •
• NUMBER i NTu •
'MECNUM rlELO OF.
: UNIT BLOC'I< :

I
•••• tGI ••••••••••
.INSE14T MOM Of •
'OECB ... SI<ELETOIt •
• INTO CUMBUF •
• FlEW OF UNIT'
• 8L.OCI< •

I ·····Hl·········· 'INSERT ADOI' OF •
'OEC88 SULETON •
• INTO NXTBUF •
• FlEW OF UNIT •
'8LI< IF "} 8UFFER'

I ·····J1·········· 'INSERT ADOI' OF •
• 1/0 8urFEIIS •
• INTO DIC8 •
'SIIELETONISI 1M •
• UM IT 8LOCII •

1 ·····111·········· • INSIIIT ADDII or •
• 8UJU:F ... INfO •
'01C'8,. SIIELETON .----
• I N UNIT 81AX1I • ·

245.2

·····C2·········· 'IMSERT ADOII ar •
• bUREn INTO •

-->'DEC88 SIIELETON •
• IN UMIT 81AX11 •
• I F TWO .UFFERS •
~~~::-->l .... 

02'" '. 
•• e. 

.' '. YES 
'.WRITE AEVUEf.T •• -----.. .. 

*. .• .. .. 
• NO 

l .... 
'02 • ->: C2.' 

O ... SWIUTf. 
·····Bl······· ••• · . · . 'WRITE ... RECOItD • · . · . . ............... . 

l~' 
·····cl·········· • OIlT ... l" NEXT • 

__ >:OWtl~ ~~rn:6 : 
• DEPENDING ON • 
'O ... TA St:T FORMAT' . ............... . 

I ·····0)·········· 'IMSEIIT ICELATJVE' 
.ItECOItD NO. INTO' 
• 8L11I1E'... OM • 
: BUIIEr8 FlEW : ................. 

I 
••••• [J •••••••••• 
• PLAn:; I!UFFEII • 
• PUIN'I't:M AND • 
'BU.'FUt SUl IN • 
: MEGlS1U.S • ................. 

1 . '. .. ) ' . 
• ·t:MTt.MEO·. 

NO .' FROM FILE '. 

l
---··IMITllU.U ... TN .' 

'. SLl'TI01f •• .. . . .. .. 
::~;: I ns 

····Gl········· • IIETUIIN TO • 
JlK:FCOfIIV • 
1 He -.cONI • ............... 



Chart G2. IHCDIOSE/iHCEDIOS (Part 4 of S) 

DI'.STERM ,., 
to} t. . . '. 

NO ,."NY PENDING., 

r

-- -·0 .0PER;'f~ONS,.'· 
'. . . '. .' • YES 

j 
••• "c)'" ••••••• · . • WAIT FOR I/O 

I : COMPW:TION 

L __ :::::::: l''''''': 
.t ... 0 J ••• t •••••• 
• fREE MAIN • 

STORAGE 
OCCUPIFD BY 
UNIT BLOCJ(S . 

•• t •••••••••• t ••• 

I 
! 

••••• E l ••••• t •••• · . '("'LtJ!.E DCRS f'OH • 
• DlllfCT ACCESS. 
• uATA SITS • 

j 
.t •• F).t ••••••• 

• ~ETURN TO • 
• C"LLER 

• •• "G l.t ••••• t •• 

GETUAT 

I 
: •••• Hl ••••••••• : 

• SAVE 06RN IN • 
• [ SRNP'TR • . 
••••• •••••• t ••• t. 

j 
, ., 

. J) ., . ., o. DSRN .0 YES .0 NEGATIVE OR ,"--_. ., roo LARG~o. 

'. ~. 
• NO 

j 
••• "I(]" •••••••• ···.1(2········· · · • o. GET UNIT 0 

• RETURN 0< ________ 0 ASSIGNMEtrr 0 

o •• TABLE POINTER 0 ............... . . 
••• t ••••••••••••• 

, .. 
fica t. 

o· '. .0CIU.LED FHOM., NO 
> o. O[ fl NE f"l U; ,0 - - -.. . 

'. .' 
• YES 

j 
•• t. 'Ha. •••••••• t' 
• 0 o GET PARMETER • 
° fOil ERROR • 
.MESSAGE IHC220Io · . ..t ... t ••• t ••• t .t 

1 
• •••• J" ••• t •••••• 
.COMI tn'fC • .-.-.-.-.-.-.-.-. 
• SET UP FOR • 
: ERROR "'ESSAGE : 

• •••••• t ••••••••• .... 
001 ° 

->0 [)! • 
o • 

..t. 'G~" ••••• t •• 
• 0 • GET PARMETER • 

- ) • FOR ERROR • 
:MESSAGE IHel201: ................. 

j 
•••• 'H~" II " " " 
• PRC'MHTFC • .-.-.-.-.-.-.-.-. 
oLINt( SAVE AREI'.S. 
• AND SET UP FOR • 
• ERROR I'ISG 0 · ............... . 
l:!: >-> j 
•••• IJ."" ••••••• · . 
• I NDICATE NO • 
: RECORD PASSED : · . ........ ........ . 

j 
• •• If( 5" ••••••• 

• RJ::TURH TO • 
.cALLER AT ERROtl. 
• OFFSET ° ............... 

Appendix F: Object-Time Library subprograms 245.3 



Chart G 2. 

246 

IHCDIOSE/IHCEDIOS (Part 5 of 5) 

· ... '~]" ....... . 
• PRCMMTPC ............... 

j 
: •••• 8) ••••••••• : 

• LIN)( UP SAvt 
: AlWtS . · . ......... ....... . 

OOM' .... " 1 
: •••• e) ••••••••• : 

• SET UP • .PUAMf,TERS FOR • 
: ERROR MESSAGE : ................. 

1 r----------------·····0)··········---------1 IF IXTDOEO : !~~~~~. _._._._: : !!l1lO" 1WID1.IIIG 
• PROCESS EJlRQII • : II NOT .uaarr. 
• I'I£SSAGE· 1 IHCEJtM "0. 
: ••••••••••••••• : : EUCU'!'ION 

j 
• •••• f: l- ••••••••• 

• IIETU"N • . ........ ...... . 

L _____________ • __ 



chart G3. IHCNAMEL 

· .. ··Al········ 
P'RDML' .......... .... ~ 
! 

, " 
1'1 

I 
! 

•••• ~; 1 ••••••••• 

• 0 
: TrRMI NATE .JOB : 

••••••••••• If ••• 

••••• t. 1·· .. · ... ·· .. 
o 0 

'INITIALIZE rlLt o 
,>0 vi A flO,S' 0 

i 
i 

: •••• fl •••••••• ··: 

o 
REMl Rl,'ORD 

.• " J.,' •.• , '.NO l' 
to N"'~ 'ji:'"fJ'JNrI • *----. , . . . , . 

• YF:!; 

1 
, -, 

-------------~ 

02' .'., . . '. 
NO " NAM! MOllE " 

f ---"r~AN e CHAR~.,' 
'. . . 

'. .' • YES 

I ..... £2·········· · . 
• GIVE ERROR • 
:"'ESSAGE lHe;']ll: · . ................ . 

------'! 
: •••• F2 ••••••••• : 

• GI VE fRROR • 
:"'ESSAGE IHcnu: . ............... .. 

1 .... . . 
: r 1 : .... 

HI : ••.•• H2 ••••••••• : 

• ' NAME IN " NO. • GIVE ERIIOR • 
'. N,IUo4E.LI~T Ol:-'T, ·-------->."'ESSAGE IHC222I' . . . . 

" '. .' • YES 

j 
: •••• Jl ••••••••• : 

• IMPLEI'IENT IIEAD • 
:USING NAMl:l.IST : 

• 0 ................. 

· . ••••••••••••• II •• 

::::: : > l <.--- --- --- -----------

••• IJ( 1' •••••••• 
o • 

RETURN 
o 0 ............... 

···· ... l···.····. · . • PVRNL. • · . ............... 
j 

, " 
R1 " 

.' - I • 

• 'I/O DUJtING '. NO 

'. I/O EMOII, • '---1 " P'IXUP .' '. .' 
I •• ' 

• YES 

1 I 
: •••• Cl ••••••••• : 

: Glyftct~?R : · . .. . ................. 

1 ····01········· · . • TEIIMlN ... TE .JOB' · . . ............. . 

: •••• El ••••••••• : 

0INITIALIZE FIl.E" 
: VIA flOCS. .<--

! 
••••• F' 1" •••••••• 
o 0 

'WItITE NAI'II.LIST 0 

• NAME • · ................. 
I 
1 

: •••• Gl ••••••••• : 

o IMPLEMENT WRITE. 
:U5ING NAKHIST : 

· . ............... . 

1 .... H]········· o • 
IIETURN • · ............... 

IIOTII 

Appendix F: Object-Time Library Subprograms 247 



Chart G4. IHCFINTH/IHCEFNTH (Part 1 of 3) 

····Al·· ...... . o • 

• MIT"' • · . ............... 

1 ·····83·········· · . • OBTAIN • 
'IIf!'ERRIIPT CODE ° , , . ....... .... ..... . 

1 
.' . 

Cl ' • 
.. ' ' .. NO. ' IS •• YES 

1

--------------------·." fJ:i;~~~~~. "·---1 
'.. ..' '.. ..' . . .... 

'03 0 

• ,f'~' . 
. . . DETEMiNE -itiriuuPT -TYPE' . -.
-~~¥~ i ,.iCATioN -. -------1-~~5~~--

f'X-PT. OVERFL. ,t,l.£kT 
FX-PT. DIVIDf. I f'XOve FL-PT. SluN. ,t,L.EfcT 
DEC. OVEkFlo. ,t,loFR' 
DlC. DIVIDE DVCIUI 
[Xf'. UIiERFlo. FPOVF 
EXP. <lNDEHFL. FPUNF 
tL'PT. DIVIDE I)vCHI': 

SPEC • o. 
f! 

.. . ' .. 
. 'I S I HCo\DJ"T'. YES 

0. LO.a.DED •• ---

'.. .. . 
'.. ..' 

o N" 

1 ·····GI·········· · , · . • LOAD IIfC"OJST • · . . ............. .... 
I' ----------
V ·····Hl·········· • SET UP ERROR • 

'M£SS"G£ IHC2i0I. 
• FOR BOUNO,t,RY • 
: "LIGN ERROR : ............ ..... 

I 
: •••• Jl ••••••••• : 

• SET UP • 
'PMAMETERS rOR • 
• 1 HCAOJST • · . ................. 

1 ····1t1········· · . • ao TO IHCADJ.,. • · . ............... 

248 

t')WV( .', 
F" '. 

.. . ' .. 
Yf!; ,0,:.; EXTENUEUo. 

---. _______ • __ .. -'. EIUI H"'.(.I.INC, •• 
'. Pkt;st.NT •• , . , 

'.. ..' , NO 

1 
.... 
'01 • 
: G\ ."1 .... 

OVCHII' FIX •••• l(i]" II...... G" '.. • •••• G!> •••••••••• · . .. . '.. . . 
• SET UP EIIROH • .' FLO.t.TIN<> 0. Yt.S • DETERMINE ° 
:MESS"GE IHe 20'1 1:- - - -- -' - >'. ~lIf[H~t~U.t. ••• ------ . ->: INTf.RRIJPT lYPE : . '.... . . . ..... ..... ....... '.. ..' ................ . 

l '02' · ~... I 
-):.~:' . 

·····H~·········· 'PICI': UP OAT" IN' 
• ERROll FHOM , 
.Fl.O"TlNG PulNT • 
: REGS : ................. 

1 . '. 
J!) 0. 

.' ME ' • 
• 'lNTl;RRUPTS '. rES 

·.TO Bt. IGNOkEO •• ---1 '. .' '. .' 't .' • NO ••••• 

l .... '02· 
'02 •• £3. 

-). <.: 1 ••• . . . .. .. 



Chart G4. IHCFINTH/IHCEFNTH (Part 2 of 3) 

.... 
·.02 •. 

:.~:.---~ 
"LERT 0 '0 .·.·.c2.......... C) 

• • • • t. 
• SET UP ERROR' YES o. EXTENDED ., 
'MESS"GE IHC2101.(-------- •• ERR HANDLING,' 
• • •• PRESENT " · . '.. . ..... ... ......... '. .' 

j 
.... ·02'········· 
:~~:~~~._.-._t_: 

WRITE ERROR • 
MESS ... GE • 

• NO 

.... I • 02 • 
• 1-.' • > · . ... . 

:,~ IPIT ,., 
E I 

, " o. IINlltHFLOW " N(, 
-.------- ------>., <,vtHrLUW U~ ."--

" ~IVID[ c~" 

'. .' • YES 

1 
,'. ,'. 

: •••• fl ••••••••• : •. F ... ' 

iic~ 11\' law' H!, , ·'010 USr.K '. 

n . . '. 
J ... T... :<--------.,.fIX UP [ .... 1''' •.•• ---. 

to .' 

YES .' EXT HiDED " 
- - - -'. EHI< HANLJLI N(, .' 

" • PHr.~,r:NT., • 

["" ------- ;;;;; --, j "' 
•••• t(; 3 •••••••••• · . • (;JVE !.TMD-'RD 0 

• fIXUP 0 · · ................. 
j 

•••• H It •••••••• 
• RETUHN TO • __________ - - ______________ - ______ - ____ --->0 SUPU<VISOR 0<--· . ............. .. 

Appendix F: Object-Time Library Subprograms 248.1 



Chart G4. 

248.2 

IHCFINTH/IHCEFNTH (Part 3 of 3) 

P'POY' Bl'.'., 

. ' .. 
NO •• EXTENDED ., 

r
--- .. ERIl HANDLING,· 

•• PRt;SENT ,. 
'. .' '. .' 

::i;: i '" 
: •••• CJ ••••••••• : 

• SET UP EIU!QR • 
• "'ESSAht. I Hl' 20 11. · . , ... , ........... . 

.... 
-01 • 

l ... . ·0 I • ->: (.,'l.' 

:.:> .--~ 
IMPR , •• 

:.;;;rl);.~~~~; .. : .' f"1 ' •• 
.... ESSA(,;E IHCJ10I. YES,· EXTENDED • 
• f'OR I"'PRECISE .<-------- •. EIU! HArtDL-IN" •• 
• INT. ., PRt:Slrt'T' •• · . . . 
....... 'j" :: .... ----------.... -'., I ~ 

..... (, 1-········· .DETlRl'lINl WHICH· 

.ANu THl NUMilll< • .or fjIT:. TO TUIIN· 

• ON • · ................. 
j .t ... H 1 •••••••••• · . DETERI'IINE • 

INTERRUPT 
: TYPECS) ............... " 

t :~~'. 
-): C\ • ... . 

P'PUler •• , 
all •• . ' ' . 110 ,. Ift'''OEO •• 

1
---· ,IU IIANOLIIIG • e 

e. PUSI..,. •• 
'. .' '. .' 

::i;: i m 

: •••• c •••••••••• : 

:..m.8t f~~~Il: . . . . ................. 
t :~~ .. 
-.": G~.' 



Chart 

.... · . : ,::, '--1 

G5. 

•••• 'Al' ••••••••• 
• ISSUE SPIE TO , 
, T"/tE CAAE OF , 
'INTERRUPTS THAT' 
'OCCUR IN MOVING' 
• D"T" , ..... ........... . 

I 
t 

• II' '81' ••••••••• , . 
, S"VE PREVIOUS • 
: PIC" '-DORESS : · , ................. 

I 
! .... ·CI'········· , , 

• MOVE D"T" TO • 
• DOUBLE WORD , 
, BOUNOUY • ............... .. 

I .... let···.· ... ·. 
'ISSUE SPIE F0R , 
, .\PPROPIII"TE 

IIn'ERRUPT 
HMOLING 

j 
..... El··.··· .. ·· 
'UEXECUTE INST ' 
• WHICH C"USED 
, OlUGlNAL 
, INTERRUPT , , ................. 

I 

IHCADJST 

, '. . '. 
rt '. F2 '. 

• ' '. .' W"S '. 
• ' NEW'. NO .' COUDITION '. 1m 

'. INTERRUPT • ,--------)'. CODE "'FF'lC1'ED. '---j 
'. OCCURRED .' '. • • '. . . '.. . 

'. .' '. .' 
• YES • YES 

1 1 ..... GI.......... . .... Gl •••••••••• · .. . 
, ISSUE SPIE TO ' 'MOVE NEW • 
• RESTOIIE' 'CONr)ITION CODE' 
: ORIGIN"L PIC" : : TO PIE : 

I 
•• It HI' ••••• It' 

• RET TO UITH' • 
'TO PROCESS NEW • 
• I In'ERRUPT • .............. . 

................. . 
1'--- -- -- ---

: •••• H2 ••••••••• : 

, ISSUE SPIE TO ' 
, Rl~TOkE ' 
, OIlIGINM. PIC" • · . •••••••••••• ••• II 

j 
····J2···· ..... · . • RETURN • · . .......... ..... 

iOO'i'i:; THI5 ioiOuUi.t; IS LO"OED 
"ND C"LLED BY IHcrINTH/IHCEFNTH 

• •••• D J •••••••••• · . • MOVE 111,',TR TO • 
: WOk~ ARrA :<----. ................ . 

••• ·ALI •• • •••••• · . : I HC'ADJST ............... 
I 
! 

• •••• BLI •••••••••• 
• CHECI< '-DDR OF • 
• IHSTR FOLLOWING' 
• THE ONE WHICH' 
·C"USEO BOUlWARY' 
• MIS"LIGNMENT • . ............... . 

I 
t ; . ' . 

CLI '.. • •••• cs •••••••••• 
.' NEXT '. • ISSUE" SPIE • 

.' INSTRUCTION'. YES • MJllRO TO STOP. 
'. ON WRONG •• -------->. SPECIAL • 

" BOUNO-'HY .' • INTERRUPT 
'. • • • H"NOLING • '.. ..' ................ . 

..... "f~..... j 
• uBTAIN' •••• OS ••• • ••••• 
• I!ISTkUCTION • • Rt;tURN TO • 
• WHICH CAUSED • 'SUPERVISOR fOR' 
:SPEC INHHkUPT : ...... !~~~~ ...... . ........... ~ .... . 

I ... 
1:.3 1:.4 '. . '. .. . '. 

• 'I~', BuIJNOAf<Y'. Nu H.:;, 'INSTHUCTluNO. 
" VII)LATIuN '----j_-- .. LEN{;TH COuf"2.' 

" HArWLEO .' '. .' '. . . '... . 
• 0 . ' '.. .' 

i '" ----------,i 'U 
·····Fl·········· ..... ,,, ......... . , .. , 
• MOVF ul' cuul • or;ET INC,T~\JCTI()N • 
.... ND RI (,F IN. Til' • UNG1H • 
'T(, A Tt.MP AkfA • • .. . 

, . 
" f.X~lNI)ll' ,Ye', 

',lk~ HANIlLINL .• _
'. ~ Nt LIJ[ltL., • 

" o' • Nu 

1 . 
HI', 

.' '. NO .. *IS MEfl~~A(;E '0 

1
---'. TO AE WI<ITTEN.· 

'.. . . 
'0 0' 

'.. .' 
•••• • YES · . 

• "1 • · . 1 
••••• J l •••••••••• 
• DECllEMENT • 
• MESS"GE COU,.,.· • 
• "NO PLACE NEW • 
• COUNT IN • 
• IHCdOPT • . ............... . l' ----------
••••• t( 1 ••••••• • •• · . 'C"LL IHCFINTHI • 
• IHCEFNTH TO • 
• WRITE MESS"GE • · . ................ . 

l .... . . 
->: U : .... 

I 

1 · .... (~" ......... . 
• MU!JIF'Y Ul:;Tk • 
• A1JD~ES;, 10 • 
0f'uINT Tu Iw;Tk • 
• WHIlH CAII:,lD • 
• lUl EHI<Uf'1 • ............. .... 

I . .... H"'·········· • RESET P:.W • 
• AOOklSS IN PH. • 
'TO IN:;TR WHICH .-----
• CAUSED • 
• IrrY"ERRUPl • . ............... . 

Appendix F: Object-Time Library Subprograms 249 



Chart Gb. IHCIBERH 

250 

: •••• Al ••••••••• : 

:GEN~~~l>E~OO[ : 

- -- -................. 

1 
: •••• 83 ••••••••• : 

-OBTAIN J NTERNAL-
-SEQUENCl NUMBER-
: (I!.iN) : ................. 

1 ·····el·········· - --CONVERT ISH TO -
-OECIMAL FORMAT -- . - -................. 

1 
•• "'Dl" I ••••••• 

• BRANCH TO • 
IHCEItRI'I TO 
HANDLE THE 
WRITING or 

ERRuR I'ISG • ........... ... _ .. 

j 
····E)········· 

• IBEXlT ATN OF • 
• JRCFCOMiII • 
• I HL lC()MH • ............... 



(' t ;,1 f t (~7 • 1 II r ' [; T 1\ 1=" (P (1 t t of 2) 

THIS MODULE IS LOlUlED 
ANI) CALLED IIY THE ~TU F.XIT 
ROUT 1 NI:: SECTION Of 
1l'''Fr'''M4 / IIIClI:rQMH 

P"','RJRl 
•••• '('1' ••••••••• · . • INSERT T 10 • 
'STJ\"IJ~; IN foRROR' 
• IO!SG • · . ·::::· .. ·1········ · . • 01 • -') · . ... . 

V 
: •••• '1 ••••••••• : 

0<;1'1 P,)ttn'FR Tn • 
-;"'''''', ~\'[ 

I\~F/I 

•• • •••••• t ••••••• 

I 

I 

1 
••••• ""1 •• t ••••••• · . ""1 POIN'I'ER Ttl • 
• Tfd' ('c_'NTf.4tQ • 

RL' I('~ 

I 

1 
: •••• Fl ••••••••• : 

";~T SYSTEI'IIUSEH' 
'''PEHD COD" AND • 
• .'~':·:P"M P'iW • . 
• •• • •••••••••• t •• 

I 
I 
<.; 

: .. • •• Hl ••••••••• : 

• '.~,T '\~):!R Of • 
• ;1\. TIJY IJ(l'Ij Itlf • · . 

FXITRTM2 ·····C2······· ... · . 'GET SYSTI!:M/UStR' 
'~8!ND CODE ~I<IO • 
• PROGRAf4 PSW • · . . :::: ... j ........ . · . • Ll2 .-. > · . ... . 
.... 'D2*········· :(~~~~~~~l_ t_._._: 
• lONV1'RT ABENn • 
• rODE AND P~W • 

: •• ~~~.~~~~!~~ ••• 
I 

1 
••••• E)t ••••••••• 
• I ';SIJF :,~(, WTO • 
'MACti(JS Tu WkITf' 
• r:R~OR ME:;:,Ar;l' • 
: IHC2~l' 1 • ................. 

.'. 
l' 2 '. . . ' . 

. • ! S A8ENll 1 N'. YES 

" t. ~,I,~~~~l .• ' '---j 
to 0' 

f •• ' 
• N" 

I 

1 
•••• 'Gil ••••••••• · . • RESTORE :;1tAi. • 
• "UPERVI ~;Cfl ~;AVt·. 
: ARF:P. r'·1 NTt~ : 

••••••• l.It •••••••• 

1< -

! 
: •••• H2 ••••••••• : 

RE"jORE 
RF';1 SH'flS . ................. 

j j .·· .. n·......... . .... J2 •••••••••• · .. . 
• :crT R[TI)I(N' • Sf.'!' RETURN 
"'I~-" (RFTRYI .-----1 · (,ODE:O (NO 
• • RETRY I · . ............ ..... . ............... . 

-------, 1 
····X2········ . • RETUlIN TO • 

• SUPERVISOR • · . .......... ..... 

.... ,,) ........ . · . • I HCSTAf: • · . ............... 
1 
! ·····83·········· • SAVE IIICOMI • 

'PAJUUUTEII LIST' 
:M)~i:I~,A~~vr:--- -----------> [

--OETEMiNi-iiO-COOi------. -] 
-------j---------I ~~~~~~~ -

• AREA • ......... ....... . 
NOlO WTP .····c1·· ....... . • • 

• INSERT 110 • 
'S,."rus IN ERItOIt. 
• MaG • • • ................. 

l .... . . ->: 01 : . ... 

12 WTP ---- ------ ----- -- ------ ----

·····e"········ .. • • 'il} SYSTIIVUSER' 
• ND CODE AND • 
• ItOGIIAf4 PSW • • • . ............... . 

t .... · . 
• 02 • · . .... 

Appendix F: Object-Time Library subprograms 251 



Chart G7. IHCSTAE (Part 2 of 2) 

.. ··AI········· ---T--------------
: Rr:TRY : ! :::!v~:O~ROII ····Al········ . · . 
•• •••• •••• ••••• .L _____________ _ 

: CALLCIfVT : ............... 

1 
: •••• 81 ••••••••• : 

• SAVE CONTROL • 
: BLOCI': POINTER : 

· ..... ........... . 
I ·····ei·········· • ISSUE STAE • 

• MACRO TO • 
• SPECIFY A NEW' 
• EX 1 T RTN ADDR • · . ..... ........... . 

I ... ··01·········· · . • GET ADDR OF • 
'PARMS IN 18rOM.' . · . ................ . 

j 
: •••• £.1 ••••••••• : 

• GET ADDR OF • 
• STAE CONTRuL • 
• RLOCI< POItn'ER • · . ................ . 

I 
~ . '. 

Ft '0 . . '. o. 110 TO BE • 0 NO 
• . RESTORED 0 .- --

'. .' '. . . 
' .. ' 

• YES 

I .... 'Gt·········· · . 
RESTORE I/O 

· ........ ,. ....... . 
1'--------

.... . HI'········· • ISSUE SPIE FuR • 
• PROTECTION • 
'ADDRESSING AND • 
• SPECIFICATION • 
• INTERRUPTS • ........ ........ . 

j 
.... ·Jl·········· 'SEMCH THROUGH • 
• CHAI NED SAVE • 
• MEAS, • 
:8~8t~~~0~lIH : ................. 

I 
0'0 

)(1 • 0 

o • CAN • 0 

o' TItACI:BACI( • 0 NO 
'0 MAP BE 0 ._--

'. COMPI.£TE o' '. . . 
' .. ' • YES 

•••• 'H2'··· •••••• · . 'ADD INDICATION • 
- - -- >. TO MESSAGE • · . · . ................. 

j 

I 
~ ..... Bl········ .. 

• SETUP' 
'PARMrrERS FOR • 
• CONVERSION • 
• ROUTINE · . . ............... . 

I ·····e)·········· ·rcvzo • · -. -.-.-.-.-.-.-. 
'CONVERT SYSTU • 
'UEND COOl AND • 
• PSWTOUX • ................. 

1 ····0)········· · . RETURN : . ............. . 

••••• J 2 •••••••••• - - - - - - - _. ,.----------------
'IHCERRM • l IF InaDaD 
• -.-. -.-.-.-.-.-. I aOOR IlAllDLIIfC -->: [RR~:C~~¥AGE : : II JfO'1' 'USIlf'l', 
• .: IRCZ .... DDS · .. · .. ·1·· .... · L_~~ ___ _ 

.... )(2········· 'CALL IBEXIT TO • 
• TERIUMATE JOB. · . ............... 

L ___________ _ 

252 



Chart Ga. IHCERRM (Part 1 of 2) 

I HCERRI ..... AI····· ..... ---- ".--------------------
o .: CALI..BD BY IBCPCONII/ 
:IN~~AIfnkN?;~Y : : IBCZCOlCH FOR ERROR 

• I SUJGIARY DURING LOAD 
" : J«)DULB TERMINATION •••••••• ••••••••• L. ___________________ _ 

I 
IHCERRM ! ..... 81·········· ----..,.----------------

• • : CALI..BD 8Y 
:S~ ~~Sll~: : U8MD ItOO'l'IIG 
• AItEM • I ~IIIC; 
• • : EJUOR •••••••• ••••••••• L. ______________ _ 

I 
! ·····el· ........ . 

o MAltI INITIAl. • 
"CAl.L TO FloeS' • 
• I GET 8l11'P'ER 0 
o ADDRESS I • 

• 0 • ••• 0'" ••••••••• 

j 
, ", 

0
01 

"'. 
, • • IItTRY FOR'., YIS. • 

• S~Y ,0 ____ >. A~ 0 

'.. .' .. 
I. .' •••• 

.... . . 
o A3 • . . .... 
! 

·····A3.······· •• 
• PRINT • 
·TPI'4IMATIOM DUE. 
• TO DUPLICATE • 
• EIrfRY MESSAGE • " . ................. 
:~i:·--J 
· · t ·····B]·········· · . • PilItn' MESSAGI • 
• P'OR THIS ERROR • · . · . 

I 
1 . .. ··C]·········· "IHCETRCR • .-.-.-.-.-.-..... -. 

o • 
:GIVE TRAC!.BACJ{ : . ............... . 

j 
, ., 

03 I. • •••• 0 ........... . 
• e •• .. • 

,oF'R1':1': 80P'Yf:R., ns. 0 
" A.RU ,.-------->.ISSUE P'U!MAIN • 

'.. ..' . . 'e . • • • 

. ... . . 
: liS : 

1 
• •••• A.~ •••••••••• 

" . 
"GET ADDRESS Of • 
• L.A~;T ENTRY IN T 

• TAPI.E • · . ............... . 
I 
t· · ····85.· .. · ..... · . o GET NUMBER OY • 

" ENTRIES • 

· · ............... . 
• • I 
:·~·~·:->l 
.... ·CS······ .... · . • GET NIJMBEH OF " 
OERRORS rOR THIS' 
• ENTRY • 

" · ............... . 
j 

. ", 
D~ 

• O;'~Y ERROH;'.. NO 
", Of THIS TYPE .• ---

o • 

" ' .... ' 
o NO 

j 
•••• eF.I •••••••••• · . .. i <~---- ----------~~~~~:;T:::::: .:: t ;" 

····E)········· . . .. . '. GET EIUIOR • TERMINATE J08 ." "NO ,"HAS HEAD I Ni;". 
NUMBEP. : VIII J8!XIT 0 : PRllrf R!.ADING :<------- •. ~EF.N PIHNTtn •.• ....... ........ . . 
j 

n···.. • •••• '2.......... ,.).'. 
, " I/O '0 'INDICATE BUFI"ER. ," 

,"ERROR 1218)', ns • MEA P'OR. ," 
",OR ~ROR 206 ,.-------->.IU:SSAGE MUST 8E.-------->., ERR' 211 

". OR 226 • • P'REED " 
" 0 • ............... .. . , 

'. .' 

................. 
l ________ _ 

: .... , .......... : 
". YES • en BUT ,.-------->. ADDIU:SS If 
• 0 SPECIP'IED ................. 

jMO i NO I ! < __________________________________________________ ~ _________________________ J 

r.1 . . '. 
,0 DUPLICATE •• ns 0 0 

" ENTRY ,'---.-)' A3 • 

' .. ' 
. .. 

,0 • 

o NO 

1 ·····R1·········· • SET r;ItTIlY • 
• SWITCH AltD • 

STOlt!: f:ItTRY · MOMBI!:R · ................. 
j 

. ·0 Jl ., •• • •• J2 •••••••••• . ". . . 
.;. ~~RI" .; .~ ______ >:,.m"broIScg~ : 

• TABLE ,. .IS !lOT 1M TULE. 
'0 .' • • .'j'. ~~S ·········l··;;;::· 

- >. G2 • . . .... 
: •••• U ••••••••• : 

• Gn TULE IMTRY. 
• POR THIS PROR • 
: I'lINBER : ................. 

1 

'. .' 
• YES 

,j 
• •. ··rs· .•.•••••• 
• PUT ERROR • 
" NUMBER liND • 
• ERROR COUN1 IN. 
: Mt:SSAGE : · ......... '" ..... . 

I 
1 ·····G'l···.·· .... · PRINT LlN! · " . · ............... . 
1< --- -----

·····H5·········· · . • DICRI':MEIrf TO • 
• NEXT EIn'RY • " . · . ................. 

j 
. ", 

J'> ". .' ' . ns ,. ., 

r
---.,MORE EJlrI'RIES .0 '. o· '. . . 

'. .' 
: .;:": l' NO . ... 

· ····1(5········· . 
• RETURN • · ............... 

..... 
• 02 • . . ~. . Appendix F: Object-Time Library Subprograms 253 



Chart GS. IHCERRM (Part 2 of 2) 

.... 
·02 0 

• A' 0- - t · . .... 
0'0 

At '. • ••• 'A2- ••••••••• . ". . . 
,. 1/0 t:RROII " YIS • SET SPEC lA" • 
',~~lTG~e~:£S~ooo_------->: lilT SWITCH : 

'. . . . . '. .' ................ . 
° NO l ..... . 
1 ->: Cl : .... 

o • 0 

.• 8' I. I. :;;;;,t2i;~~i~: 
" COftTINUE '0 NO oTERMlllATl1IG Dut. 

0, (8A~"EO 0If o.- _______ >oTO ERROR Cooln" 0 

0 0 COUIn"S I 00 • MESSAGE 0 . . . . . 
I •• ' ••••••••••••••••• 

: .;;. :_>j YES L>~~l::-
•••• v 

,0, cl '. . .... e2.......... · .... el.· .. ······ 
" PR I In" " • •• PM 1 NT MES:;AGF. • 

NO " Mt:SSAGE " YES oGET 1>.00RlSs ""n)' .... NO SET foI£:;~"'Gl' 
___ ', 18A:;fO ON ,0-------->. LENGTH or .--------')0 PRlIlTlO • 

" l"OUI'tT'SI " • MESS ... ';E' INOIC ... TlCJN '. . . . .. '. .. . .................. ............... . 
1-------· --------- -- ------- - ---- -- - ---- ---- -------J 

, " 
.Ul I. : •••• 01 ••••••••• : : •••• OJ ••••••••• : 

I'r< I NT " n:s 'GLT ... nOllf~,;' ... Nn' • 
.".~~fr~L ,.' "-------->:( UH~~~~T~lI~~t:R : ------->: PHINT Hllnll< . . . . . '. .' ................ . 

° NO 

1< - - - - - - - -- -------- ______ 1 
v 

,', 
til. • •••• li· ..... ·... ··.··lJ·········· ,.., • • 'lH<"lTHlH • 

" ncAl'r""'CI< 0 0 YEs • Rll"OVt" ()N~ :..IIV~·' • -. -. -. -. -. - • - 0 -. 
o. Mt.\illl.,Tt:(l ,o--------).AHEA fROM CH ... tU"--------~. 

" " .0' : :: C ... LL 1 II ... , l '. .' .. 11 .. t I......... . ........... It .. . 
• Nt) 

:~::~:->l 
· "1 ..... F2·.········ . . '. . . 

" I)"lll lX1T ., NO 'SlT RETURN COOEe 
--)', RlI.IUE~Tt;{1 ,e ________ >. TO 0 "---1 

'. '. .. . : ~ 
'. .' II ••••••••• It •••• 

• Y E!; ,... • ••••• 

I '01 • • roll • 
:.~:. '--t .• 

, " ..... ta.......... f..i1 t. • •••• ljJ •••••••••• · . . . '. . . 
.:;t:l IIt'rtlllN CODt: o ,o'IIEE BunER.o YES' • 
e 1T) \ • ., liME.&. ,e-------->eHiSUl Un:lMAIN • 

· ••••• It. It ••• It •• 

j 
••••• it 1 •••••• It •• 

• 0 .- ....... - .... -.-. · . ',ALI. II! ... R t.XlT • 
o • 
••••••••• It •••••• 

254 

l .... . . 
.. >' (fa. • . . .... 

'. . . . '. . . . . 
··l:~· -- -- .---. ---. ::.::: .. j ........ 

, " 
Hi to ••••• UI •••• ·'···· 

, • " • Rt.!.ToHt. U!;f"H!. • 
" T"'II[ " yt:: • Rt:l.l:.Tt.R: .... Nfl • 

',SPlCIAL. ."XIT ,.---,---->.TUH" un' lNTIH ° 
I. t. .' • : :iWI1CH : 

'. .' •••••••••••• It ••• 
• 1m 

I 
" It'J 2 •••••••••• · . .TUIIN or .. ~NTHY • 
• :;WITCtI 0 

I 
• • It .I(J •••• II •••• 

: RE't'URN 

• It •••••••••••• 

1 
•• "J JI •••••••• 

• [X11" HJ • 
.SPEI.lF'lU) rOl"T' . . 
•••••••••• It ••• 

: It •• t. ........... : 

• Rl!,TOIII:. ONt. • 
). S"'Vt ... IILII 10 • 

• tHAIN • · •• II' t ••••••••••• 

I ..................... 
:~'!~:":-.- •.• -.- : .... . . 
• IIUNITIALlZt. )' to 1 • 
: noc,. • ................. .... . 
• (t" t._ l · . .... 

, ' . 
..l.iij 

o 
.' N:!iflA\;t. '. NU 

" PHINTto •• -- ! '. . . '. . . ' .. ' 

. , 

• Yt.!... •••• 

'. . . '. .' r 

. . 
: (;J : 

. .... "' ........... . · . • PRJI'tT' Mk.SSAI'l 0 
o INDICATING 0 
.liTANOARD flXUP • · . . ............... . 

L>:·::o: . . 

. . 

••••• H~""""" o • 
° "H!NT "'ES:.A(;I 0 

->'lNOIC"'l'ING USEII' 
: F'lXUP : . ............... . 

L>:'::': 



chart G9. IHCFOPT (Part 1 of 3) 

ERRSET 
••••• Al.· •••••••• · . · . • SAVE REGISTERS • · . · . · ............... . 

1 

.... 
001 0 
• 1.2 .--~ . . .... ,. , 

. .~6. OF- '. :; ••• i\j ••••••••• : 

• :·~ii¥~~Gfg OO.:.~~ ______ >: SE~Ri~tR~oTO : 

• •• , , •• • : MESSAGES : 

'. .' ................ . 
• YES I 

... , . · . 
• 1.4 • · . .... 
1 

•••• ·AIt· ••••••••• 
• STORE NO. Of • 
• MESSAGES TO • 
.PRINT IN TABLE • 
: ENTRY : 

• •••••••••• I •• * •• 

1 
,'0 : •••• 81 ••••••••• : 

• GET ERROR • 
• NUMBER AND SAVE' 
• IT • · . ........ ........ . 
: .;:. :-J 

u~ .... • •••• B~"'" ••••• 

1 

'" · · 0" NUMBER G'I'" YES • INDICATE PI( 1!'IT • 
·.OR E" TO 2Sb •• --------). ALL ~l£SSAlo~S • 

'. . .' . : : 
"j'~O •••••••• j ....... . 

L_ - - ----- - --- -- -- - -- -----~------------------------ > 1 < -- - - -- -------- - ________ J •••• I 
NEXT ~ 

••• "("1' ......... '" 
'F1HDENTR • 
.-t-t-t-t-t_'_t_t 
'GET ADDRESS Of' • 
.ENTRY FOR THIS. 
• ERROR Nu. • ........ ........ . 

1 
.... 

'02 • 
'. E2:<-•••• 1 YES 

Dl··· IGNORITM o2,·,.. DJ' '. 

• •• .' PI RS1 '. • • '. 
• 'TABLE ~NTPY •• NO .' TIME '. YES .' ERNOR '. 

•• MOD i f'iAHU •• ---- - --->'. THROUGH •• ----- - - _ >'. CONDI TION 212.' 
• '. (SWITCH.' '. • 

• Yf: 

I 
••••• f.t •••••••••• 
• r,ETENT~ Y • 
t-t-t-t-t 1-'-1_' 
• l;lT NU .. 'IF 
• I':RII< 1'<:, ALLtJWED • . ................. 

.·0 
Fl .. '. 

YEO:; •• PAR.\M£TER '. 
- - - • 0 ~ T ()I( H,) TO ~ •• 

' .. ' 
• Nu 

••••• {, I .......... . · . 
• STO~E NO. 0.. • 
'ERRORS ALUJWED • 
• IN TABLt: lNTRY • · . ................ . 

I · 

• ~ ON) :' · . 1 NO .... · . 
• H() • · . 

o' HI '0. :~:;.~~~~~.;~~~;: 
• .NO. A!.LOWED'. YES • TO ALLOW TO • 

'. (;T OR ~,V TO . L------->.ZE.RO (ALLOW ALL' 
• '. 2',h. : ERROH:d : 

· '1' . ~o • t •••••• j •••..•••• 
----------) <------------------------

••• •• Jl •••••••• t. 
·GETEHTRY • t-t_._.-I_.-._'-' 
• GET NUI'\BER or • 
• I'IF.SSA(;ES TO • 
• PRINT • 
•• I I ••••••••••••• 

I · K1 
•• NO. '. 

• 'MESSAGES TO'. YES. • '0 PRINT LT OR ,.----). 11.2 • 
• 0 EO TO 0 •• •• .. . .. .' 1 NO 

•• 1. · . 
• A4 • · . 

. ' . 
NO 

1 
EI 

NO • ,d X • 0 

!
--- .. I'AI(Al'IJ::TEI(S .' 

'. :,IIPPLIE[J o' 
'. . . .. 

••••• • .' YF.~ 
·02 • I .... 
• E}· '02 • t.. ->: 81.' 

... ··ell-........ . 
:~E~~~L._._._: 
• GET TRACEbACI< • 
: INDICATIUN : ................. 

I . '. 
D4 

. • *. 
n.s o.CODE LT 01< '. r--- •.•. E" TO 0 •••• 

'. . . ... 
• NO 

1 . 
• •••• E~""""" · . 
• iNDICAT,_ 

.: t ________ >: ~~~i~}.:~f~r) .. . 
• .' L1 

I 
••••• F"* I * ••••• I. · . INDICATE NO • 

TRACF:IlAO : 

· •••••• t. t •• t ••••• 

---l---

H::; 

•••• 't l " t •• t •••••• 
·,;tTEtl1HY • 
• _. - t -.• _. _ * -. _. _ t 
• (iET U!;t.H • 

AI,OI<~."~' 

I . 
• H4 .. 

_. ZI-.tll) 

1 •••• 'J'" ••••••••• · . 
• STORF. ADDRESS • 
'11'1 TABLt: fN11<Y • · . · . ................. 

1/ 

'·0 K4 
.' '. 

• . • fI ~;;~l )i)i,~ ~ • 0 • ~~ __ 1 
'. ~WI1( H t)~.' . 1 n.s 

..... 

.02 • 

• .A!' 

•• * I 
'01 • · . ... . • H'> .--1 
..... H')·········· .tJPDATt: f:llH IH) .• 
• flY ()Nl. (TIII<~ • 

- ..... flr<~Jl TI,..,t • 
*'1 HJ.H,Ut.t1 ~;'" l'r (II • 
• ()N' • ................. 

I 
.1'J" -' . 

•• ll<ROR •• 
•• NUMflER (.1 ., 1'1:] 

·.MAXIMIIM TG liE. ·---1 
t .• ~·HANGElJ •• ' 

'. .' 
• 'i~~ •• •••••• 

l · 02 •• (1 • 
- >. 1:..2' • . . .... .... 

Appendix F: Object-Time Library Subprograms 255 



Chart 

.... 
'04: • 
: A; 0

0
- -! 

Al 

.... : 

:;'100 _ ,I 
• 0 ! 

G9. 

n:, 
0, 

..... 81·········· 0C;ETENTRY 0 ._,_,_t_,_,_t_,_t 
oC;ET urPFR RAIIk;Eo 
o e)F NO, 1,) HE 0 

: •••• ~'~!r:.;~~ ••••• 

i 
1 

•••• f(' 1 •••••••••• 
0TURN llN SWIT, H 0 

o INfJlCATINC 
FI R:,: 1'1 M! 

THR(ltH~H 

j 
..... ['1·········· 
o ;,Tl>lll lIrill< 0 

o RAN!a A" 
o MAX 1M"" Te' I'! • 
o ,'HANt,!'O • 

256 

.... 
'(,1 • 

~. ttL, • 
o 0 

IHCFOPT (Part 2 of 3) 

·····".,2········· . :l_~;!;~!~! _ • _. _. : 
"t I.ET "'NTHOL 

nIARA('~ f'~ 

: .. ! ~ ~l! f.'! 1'! ~.~ ••• : 

j 
.... ·82·········· o INDICATE NO 0 
o CONTROL 0 

oCHIUlALiER 'J'() ElFo 
o :;IJI'rLIfG 0 

('2 
o 

0
0 0, NO 

'.~~"")UA.U; ("l"lf'f-:!.t---

to 0' 
• Vl-:S 

j 
..... Pl-········· o IN[)L.'A1E 0 

• l\;NT~<.\L • 
't HAHAl'T~ t< T() Hr t 

• ::\!i'I'Li F~\ : ................. 
0000 I • 01 • 
• r: • ') 
o 0 .... 

F 1 NI ',flED ....... :2·········· o 0 

ERRSAV 
••••• A. 1e ••••••••• 
o 0 . . 
:<;AVl: HC;ISTERS : 

I 
o 

: •••• 83 ••••••••• : 

GET f.RJlOR 
NUMBER 

I 
1 ... ··C)······· ... .F'INDENTR 0 

1-'-1-1-1-1-'-'-' 
oGET ADDRESS OF 0 

: TABLE ENTRY • ............ ..... 
j 

: •••• 03 ••••••••• : 

.CfT ADU!H :.:; OF 0 

o WHEIlE TO !;AVE • 
o ENTI<Y 0 

j 
..... F)·········· • 0 

TII~N (lFF 
~,Wl 'J'('HfS 

• 0 MOVE TAEILE :< ________ 0 ENTRY 

· ................ . 

I .... '1*········ o 0 

R[TU~N 

[RRSTR • •••• "c.. •••••••••• 
• 0 o 0 

:"'AVl: REGISTrRS : ................. 
1 

:' ••• 8 ........... : 

GET ERROR 
I«JM8ER 

. ............... . 

1 
•••• ·c .. ••• ••••••• 
:~ !~~~~~ -._ 0_'_: 
oGET ADDRESS OF' 0 
: TABLE ENTRY : ................. 

j 
.0, 

o D~ 0
0 o. • •• 0 

, 0 ENTRY o. NO • • 
o o .MODlflfUlLE 0,0---->: E2 : 

'. .' '. .' 

1'" 
••••• E~'" ••••••• 
.t;ET ADDRt.S!; OF • 
o WHERE TO • 
• RESTORE TABLE • 
• ENTRY FROM 0 · ................. 

j 
••••• r .. •• •••••••• 
o • 
o RESTORE TABLl 0 

• ENTRY 0 

· ................. 
J.o 

o 0 

: n : .... 



Chart G9. IHCFOPT (Part 3 of 3) 

rINDENTR ,', 
~ " 

" ERROR " 
·····1.2 .• · ......• · . YES " NO, LT OR " • SET UP FOR • r --', . ~Q ~~IRS: .. ' 

~ t, ~~~!,. 
r-->. EIUtOR NO, 902 • · . · . ................. 

••••• • NO 

I 
:0~2: 1 .. . 

B1' .'., J . . . , 
,'ERR NO, GT " YES 

'. NO. OF TABLE •• -----
" ENTRIES " '. . . 

'. .' 
• NO 

I 
~ .... ·Cl·········· · . 'GET TABLE ENTRY' 

• ADDR : . ................ . 
j 

, '. 
01 " 

v ·····.2·········· 'WRITE • .-.-.-. -. -. -. -.-. 
: WRITE9~¥SS"G! : · . ........... ..... . 

I 

l .... 
'02 • 

- >. E2 • . . .... 

. I;':BLE !HT:YI. YES • ····02········· • 
'. MODIFIABl.E ,.-------->. RETURN '. . . . . '. . . . ............. . 

'. .' 
• NO 

1 . " 
• El 

.' '. YES 
'.15 IT ERRSAV ,.-----. . . 

'. . 
• NO 

j 
: •••• '1 ••••••••• : 

'SET UP !'OR ERR • 
: NO. '101 • 

IIR ITE 
•• (;t '. '. : •••• G2 ••••••••• : 

.' .. IOCS' '. NO • MAIlE • 
" INITIALIZED ,.-------->.INITlALIZATION • 

'. .' 'CALL TO rIOCS' • '. . . . . 
• 10 . ' ••••••••••••••••• 

• YES J j < - - - -- - -- - - - -- ----- -----

••••• HI" •••••••• · . • Ptrr ERROII NO. • 
• I NTO MESSAGE • · . · ................. 

1 
: •••• Jl ••••••••• : 

• IIRI TE MESSAGE • 
: VIA FlOCS' • 

· ••••• II •••••••••• 

j 
•••• Kl ••••••••• · . : RETURN • ...... .... ..... 

GETEMTRY .'. 
Al '. 

.' I, 
.' LAST '. YES 

'0 PAJtAMITI:R 0 '---1 '0 GO'M'EN o. 
'. .' 

It .' 
• NO ••••• 

I 
:0~2: . . . 

~ ·····.3·· ... ····· · . 'UPDATE TO NEXT • 
• PARAMETER • · . · . ................. 

I 
! ·····Cl·········· · . 

GET NEXT • 
P~TER • . · . . ............... . 

1 
• •••• 0] •••••••••• 

RETURN • 

Appendix F: Object-Time Library Subprograms 257 



Chart G10. IHCTRCH/IHCETRCH 

258 

.... A.l····· .... 
• 1 HCTRCIV 
• 1 HrETRCH · . ...... ........ . 

I · .. •• •• ·B2···· •••••• B.l t. 
o SET SWITCH TO • • • '. 
• INDICATE !'NTRY • YES •• EXTENDED '. 

FNOM ERhOR .<-------- •. ERR HANDLING.' 
MONITOR· •• PR~SEIn' •• . . ' ... ................. '. ..' 

1
00 

I HCERRM • '. 
C J •• 

•• PRE- '. 
YES •• CEDING USE '. 
--- •• Of IHCTRCH •• 

'. DONE •• . . . 
'.. ..' 

• NO 

: '::. :->1 ' , .... 
· .. 

• 03 . , 
•• ERROR •• NO 

• , CONDITION 217 •• --
••• OR 218 ••• 

'. .' 

1'" 
· .. 

EJ 
, " 

•• EXIT • NO 
•• ADDRESS • ,- - > 

'.SPECIFIED •• '. . . 
'. .' 

• YES 

j .... f)···· ..... 
.RETURN TO EIIT • 
• ADDRESS • · . ........ ...... . 

••• 'Gj*··· ••••• 
IIETURN TO • 

IbEXlT WITH '(--
ABONT CODE • ........ ...... . 

: •••• HJ ••••••••• : 

• PI< I NT ERROR -->: Mt;::iSAGE 

· ................. 
----------. ----------- --, I 

NOTE: 1 HCETIKH IS CALLED BY 
IHCERRM. IHCTRCH (EIn'R'!: POINT IHCERRM. 
IS CALLED BY LIBRAJlY ROUTINES 
DETECT 1 NG ERRORS. 

. ... · . 
• C~ • · . 
1 ·····c,,·········· · . • PRINT NAME OF • 

:CALLING ROUTINE: · . · ............... . 
I ·····0"·········· · . .PRINT CONTENTS' 

: OF REGS h-l • · . ................ . 
j 

... 
E~ ••••• E~ •••••••••• . . '.. . . 

•• TRACED BACK •• YES 'PilItn' MAIN • 
, '. TO MAIN .' .-------->: ENTRY POINT : 

'.. ." . : ............... : j .. 1 
. '.. , '. 

F~ '. F~ 
•• TABLE •• • • •• 

• • 51 ZE •• NO •• EXTENDED •• NO 
'. EXCEEDED OR • ,--- •• EMR ItANDLlNG •• ---1 

., LOOP • , •• PIIESENt .' 
'. FOUND. ' ••• • 

'. .' too .. ' 
• yt:s • YtS t ••• 

j 
.... 'G,,·········· , . 
'PHlIn' TERMINA'E' 
: MESSAGl : · . · ............... . 

l .' ... · ->: OJ : 

j · . 
• OJ • · . 

•••• 'G~' ••••••••• · . • TURN ERHOR • 
.MONlTOR SillTCH • 
• OFF • · . · ............... . 

1 
•• "HS' •••••••• 

, RETURN ro • 
: CALLER ............... 

..... J).......... . .... J ........... . · .. . 
• PRJ NT HEADER • • POI""' TO HEXT • 
• FOI< TRACEBACK • • HIGHEST LEVEL .<--
• • 'CALLING ROUT IN!' · ., ....... r:':::' ---------:::::: J ....... 
••••• 1< 1" •••••••• · . • CONVERT REG • 
'CONTENTS TO HEX. · . · . ................. 

1 .... . . 
o CII 0 . . .... 



Chart Gil. IHCFDUMP 

OUMP 
•••• 'Al' ••••••••• 
• SET SWITCH ON • 
• FOR MONITOR • 
'EXIT IEXITSW = • 
• X, FF' ) • · . ................ . 

I 

1 

· . • A2 '--1 · . .... 
•• ••• A2········ •• • SET CARRIAGE ° 
• CONTROL FOR • 
'EJECT ICHAR IS '---1 • c' l' I • · . • •• , " " ••• " II •• 

• '. PDUMP 

"fl1 •••• :;~;'g~~~'~;;': 
YES.' IS THIS A '. • FOR MONITOR • 

r---··. OUMP CALL ••• '<--------:i£XiT~~!i.oO.i : 

I '. '. ...• : ••••••••••••••• : 
• NO 

1 .'. 
Cl '. 

• 'IS THIS'. 
NU .' A roUl''IP '. 

<--'.DlIRING AN 110.' 
'. FIXllP .' '. . . 

'. .' 

l''' 
••• '01 ••••••••• 

o i<RANl'H TO I EH:OM' :f ,~ M~;', IHCqn~I: .............. . 

..... ~ 1·········· · . , ;·~:T ~;WITlH Tli • 
--"INOIl'ATt II" IN' 

• P"Ol;Rt S~, , 

j 
..... Fl·········· · . 
tOHTAIN ADURlS~ • 
• ",. jl,R(;UlU:NT • 

L1:;T : ................ . 
I 

•••• If, 1 •••••••••• 

• 0 o ", U.('T :Y~;TEM , 
: OlTl'l'tJT LJEVln: : 

, . 
••••••••• t •••• t •• 

I 
: •••• HI ••••••••• : 

• MA)(E • 'INITIALIZATION ° 
'CALL TO FIOCS' ° 
o 0 
••••• ••••••• t.t •• 

[ ... ·'Jl···t 
•••••• 

o ° 
'SI<I P A LINE VI A' 
• FIOCS' • 

· •• t.t.t •••••••••• 

[ 
·····)(1·········· • SAVE START OF • 
• RECORD AND • 'COMPI1fE END or • 
• RECOIUl • · . ................. 

l · .... · ->. 1<2 • . . .... 

• ••• 'C2' ••••• , ••• · . • INITIALIZE • 
'ARGUMENT SWITCH'<--· . · . 
•• '" •••• " II •••• .,.. j · , 
: 02 :- > .... 

l,ETARG . 
: •••• 02 ••••••••• : 

• ASSUME t'IRST • 
: LIMIT IS LOW : . 

1 
E2. o. ' • . . '. . ° ONLY ONE o. YES 

'. AR(.UM£NT .0 ____ _ 

'. . . 
'. .' • NO 

1 . " 

. ... ·0)···· ..... . · . • SET FOM END Of • -->: ARGUMENTg • 

· • •••• II •••••••••• 

1 .. " . , 
: J 2 : .. " 

F1 I. • •••• Fl •••••••••• 
.' BYTES o. • , 

NO .' TO BE '. YES • (.jET AYTES , 

r 

-- -o. DUMPED ,'--- - - - -- )'BETWEEN LIMI TS • 
'. lin-WEEN.' • ° 

·.LIMIT.' , • 
'. .' • II II II •••••••••• . . 

: •••• Gl ••••••••• : 

° RESn- rOR • 
: "ECOMD LIMIT :<----------------· . • •• II •••••••• II II 

1 
H2· o. '. • •••• H) •••••••••• 

.' '. . . 
• ' I S FORMAT '. NO 'SET UP FOR HEX • 

'. COOE LEGAL •• -------->. FORMT 
'. .' . '.' . . 

----- ----::1 <;::------ ------:::::] ...... .. 
J 2· '. '. • •••• J) •••••••••• .. . . 

.:.' COMPLEX·': .!~ _____ >:I~t~l~:IIT : . . . . ..... .. :;,., : ...... T ...... : 
1 <- - --- -------------------

..... K2...... .... . .... '0·········· 
• GET BUFFER' 'PCVZO • 
• POSITION AltO • .-.-.-.-.-.-.-.-. 
• ADDRESS or .-------->. BEXADfJCIMA.L • 
• CUaaDIT DUMP • • CONVERSION • 
• LOCATION" • ................. . ............... . 

l ... . . . ->. A •• . . .... 
Appendix F: 

.... · . 
• Ali '--1 · . . ... 
·····A"· ........ . · . • DUMP DESIRED • 
• LOCATIONISI • · . · . • •••••••••••• II •• 

I 

1 . '. 
Bli " ••••• B!. •••••••••• 

• ' I, • • 
• • ARt '. YES • RESf;T I/O ENDED' 

'. ARGUMENTS •• -------->0 SWITCH • 
'. EXHAUSTED. • • • '. . . . . .... ;., ...... ·T .... · .. 

1 ,', . .... c............ C!> " 
• • . • 'I 
'MESET ARGUMtNT • MO .' IS THIS A '. 
• POIItI'ER' ---'. DUMP ENTRY .' • • 'I .' • • 'I .• 
II.. ••••• •••• •••• I. .' 

l ..... · [' yr.s 
- >. 02 • . . . ... 

····D!!········· • IflEXIT • 1------------- ... -. 
• Tt:.,MINATI:. J03 • 
11." •• II •••••• 

•••• E~' I ••••••• 
• kt:1URN 10 • -->: CALLt:H : ............... 

Object-Time Library SUbprograms 258.1 



Chart G12. 

258.2 

IHCFEXIT 

.... ~ ~ ........ . . 
EX Ii 

j 
.... -8)···· ..... . . . 

GET ADDA OF 
1 HCFCQMH/ 
I HCECQMI! . .. .............. . 

j 
•• •• C J ••••••••• 

• IlRANCH TO • 
IIlEXlT 



chart G13. IHCFSLIT 

····Al··.··.··. · .. 
• SLIT!!: • · . ............... 

1 · .. ···83·· ....... . · . · · GET I .... . . .. ................ . 
• C2 • I .. .... .... . . 
1 : C) :->1 .... , ... 

:;~;g2 ••••••••• : • C) •.•. 
• -.-.-.-.-.-.-.-. YES •• •• 
• CONVERT BAD .<--------.. I GT .. • • 
• DATA FOR ERROR." •• • • 
• "SG· •••• ................. . ... 

1 r ,.-------------------------.· ... 02.......... OJ .. 
I Ir U'rDIDBD • I HCEJUUII • •••• 
: IERJIOR IlAlmLIJIG :-~R;O;-~r..;s~G~-: __ !:~.:. I LT 0 .:. 
I IS IIOT PRUaIT. • IHC21bI • •• 

: IHCZAIII DDI : ••••••••••••••• : •••••• 

L_~~~____ 1 I "" 
·····El······.... £2- *. *. El-··.. • •••• E •.......... • • . • *. . ••. • • 
·GIVE " STANDAJtD. NO •• USER FIXED •• •• •• YES • GET NUMBER OF • 
• FIx-UP .<--------.. UP DATA •• leO •• -------->. SENSE LIGHTS • . .. ... .. .. . . ....... ..... ..... .. . . .. ... .... . ............... : 

L _______________________ ~l·~ES 1· NO .... . . 
:C): ••••• F) •••••••••• 

• TURN ON SENSE • 
• LIGHT • 
• CORRESPONDING • 
• TO neE VALUE 0 ... 

1 

· ····G2········· . 
: SLITr:T : ............... 

1 ·····N2·········· · . • GET I Aim TIlE • 
• ADDit OF " • · . · . ................. 

I .. , 
"2 •• 

•••• •• e. 
• e YES. e e. 
• C2 .<----.. I GT , •• • • ,,*. .• .•.. *... * ••• 

r 
• e. 

&2 •• .. .. 
YES .e •• NO 
---.. I LE 0 •• -----*. .• *. .• * ••• . 

• 1 • ................. 
: •••• P ........... : 

·TUIlN ALL LIGIM'S. 
• OFF • 

1-- -- ---- - -----------J 

... 

! ····c .. ········· · . 
• RETURN : . ............. . 

N) .. ·····H'.········· •• IS •• • • 
• • SENSE LIGHT •• NO· • 

--> •• COIUtESPOMDIMG •• -------->. SET J a 2 • 
·.TOION.· • • '. .' . . ' .. ' ................ . 

i''' 1 ..... J).......... . .... ", ......... . · ., . 
• .TURN OFr SEllSIE • 

SET "-1 .-------->. LIGHT • · ., . 
e •• • ................. . ............... . 

1 ····11'········· • • 
• IlETUIIII • · . . ............. . 

Appendix F: Object-Time Library Subprograms 258.3 



Chart G14. I HCFOVER 

····Al········· · . • OVER,.L • ...... ... ..... . 

1 
• I, • e, ····.IU.·.·· .. ··• 12 e. 8) .. 

• • .' '. • • I. • • 110.. •. 110.. •. 
SET J z 2 .<--------.. UNDZ.,.LOIf •• <--------.. OVERFLOW •• 

258.4 

I. .' '. .' '. .' '.. . ' .. ' ' .. ' r' r' 
: •••• C2 ••••••••• : : •••• C] ••••••••• : . 

SP!T J .. ) . 
· ................. 

j ...... ..1 ....... . · . • TURN OVERFLOw/ • 
- - - - - - --- - - - - - -- -- - --- -- -- - - ---- -- -- - -- - - -:>. UNDERFLOW • 

• INDICATOR OF,. • · . .. .......... .... . 

1 ····El········· · . 
• RETlTRN · . .... ....... ... . 



Chart Gl':>. IHCFDVCH 

• •••• A.) ••••••••• 

DVCHK 

.. ····T .. ·· .. 
: .... ;;2 ......... : • -El~;~i'-. 

SET .J~l • ns . - CHECK •• 
:<--------.-l~~~~~~f~~:- •. ................. .. .. 

• NO 

I 
•••• IC' 1* ••••••••• · . 

St:T .J" 2 . ................ . , 

1 
••• "D \ •••••••••• · . • ll1RN PI 'J! [)F. • 

- ;"'C'htCt< IN[.I! "'1'1)1-<' 
• Or F (" I (j!)J • 

1 
•••• f , ••••••••• 

• IUTtJI'IN 

Appendix F: Object-Time Library Subprograms 258.5 



chart G16. IHCDBUG (Part 1 of U) 

TRACE .'. 
• n '. . . 

• ' •• NO 
'. TRACEf"LAG orf". .---.. .' 

'. .' '. .' • YES 

1 ... 'Gl'········ · . • RETURN • 

·····Hl······ .... · . • MOVE 'TRACE' • 
: INTO D8UFFER :<--
· ............... .. 

1 ·····J1·········· · . • --- -OUTIHT- - ---. 
• CONVERT LAJlEL • 
• TO EBCDIC • · . ................. 

258.6 

l :~~ .. ->: A .... .. .. 

····Al········· · . : DEBUG I • .. ,. ........... . 

1 .•. 
B3 •• . ' ' . . ' ' . 

•• SELJ!!CT OPTION •• 
'. .' '. . . .... . 

j 
----------oPiIc..----------ioiiTitiE--l.OCATlOit 
TRACE TRACE 

SUBTRACE ON SUBTREN 

SUBTRACE OFF SUBTREX 

UNIT UNIT 

Gr01F1 

GF01F2 

--Groif1 
GrOiFII 

INIT VARIABLE 

INIT AnAY ELEMENT 

IN IT ARRAY FULL 

INlTSC!.R --Gioifs 
INITARIT GF02Al 

INITARAY --Cifo2A2 
SUBCItJ( 

TRACE ON 

SUBCHI< 

TRACEON 

GF02A} 

Gr02,.1I 

TR"CE orr TRACEorF GF02DII 
- -- ------ - - -- ----- - ------
DISPLAY DISPLA"t GF02A5 

BEGIN 1/0 

FIN ISH 1/0 

SUITREN 

:~~irl;~n~:~~~: 
• AMD MMI: OF • 
• PII~ INTO. 
• DBurrn • · . ................. 

l .... ·Oli • ->. 811 • . . .... 

SUBTREX 

STAJITIO 

ENOIO 

·····rl· .. ·.····· · . .MOVE 'SUBTRACI:" 
• RETURN.' INTO • 
: DBUFFER : ................. 

l .... '011 • ->: 8ij.' 

GF01Al 

GF01"2 

UNIT ..... , ........... . · . • PUoCE IHfIT • 
• NUMa&Jt I N OSliN • · . · . .....•........... 

1 ····G.·····.··· · . R:l!TUIIN ............... 

INITSCLR ·····F5·· .. ······ · . · . .SAVE DATA TYPE • · . · . . ............... . 

1 ·····Gs·········· · . COMPUTE • 
LOCATION 0' • 

VARIABLE : . ............... . 
j 

: •••• 65 ••••••••• : 

• ----OUTNAME----· 
.PLACE VAlUABLE • 
• NAJIIE I N BUFFER • · . ................. 

l .... ·02 • ->: 1'.1 •• 



Chart G16. IHCDBUG (Part 2 of 4) 

.... 
'02 • 

• A1 '--1 · . .... 
INITMIT ·····M·········. · . · . 'SAY! DATA TYPE • • • · . ................. 

1 ·····81·····.·· .. • • 
• COMPUTE • 
• LOCATION or • 
• MRAY ELEMENT • · . ................. 

1 
·····Cl·······.·· 
• - - --OUTNo\ME- - - -. 
• PLACE NAME OF • 
, ARRAY IN • 

DBUF'FER : ................. 
j 

· ····01·········· · . 'COMPUTE ELEMENT' 
'NUMBER AND MOV!' 
: TO DBUF'F'!R : .. ...... ... ..... . 

L>:o~:' . . . .... 

INITAJIAY .'. 
A2 '. . ' '. • eo ~. ilB 

'. '. IOrLAG ON ... '---1 '. .' ' .. ' i NO 

.....• 2.!........ I 
·INITAIlIT .. . -.-... -..... -.-. -->. .Rocaa MUY • 
• !LlMlNT • · . .... · .. T· ...... 

. '. 
C2 '. o. . 0 

NO .' '0 
---. 0 END OF MRAY 0' '. . . '. .' 't .' 

l'~ 
· .... [)2········· . 

RETURN • 

·····£2···· ..... . 'TURN IOF'LAG OfF'0 
• AND INSERT • 
o ADORES:; or 0(_-

: ARGUIU;NT L15T : ............ .... . 
l · .. . 0011 , .. >: BII,' 

SUICRK • · •• ·A3·.· ••••••• • • .. cOllPUTl: • 

: ~~TifLi"" : • • ...... ·T ...... · 
. '. 

83 '. .• ~~:r~ •. NO 
'. MAX ARRAY •• _--

'. LOCATION.' '. .' '. .' 

i'" 
• • ".c J •••••••••• 

• RETURN : ............... 

: •••• [1] ••••••••• : 

o MOVt • "UlJlHY' • 
: INTO OIlIJFH.H :<--

I 
~ 

: •••• f) ••••••••• : 

• -. --UII1NIV'.t:-·· - 0 
o PLAct. AkkAY • 
:NAMt IN ,'I-<II .... EII: 

•••••••••••• I •••• 

1 ..... ", .......... . · . - . 
o("OMPUT f. ru IU;NTO 
: NlIMbt.1< 0 

· ................ . 

1 
••••• 1) i •••••••••• · . 
0- - - - ('U1INT- - - -_0 

o CONllll<T LABrL 0 

: TO UICDIC : ................. 
I :~:'. ->: B~.' 

Appendix F: 

. ... 
'O:l • 

• A ... --1 • • • ••• TRACEON ·····A .. ···· ....•. · . 'SET TRACE rLAG • 
• ON • • • • • • •••••••••••••••• 

1 • •••••••••••••• • • 
• RI!'1'URII • • • . ............. . 

TMACf·OFF · ···.0 .. ·········· o • 
'TURN TRACE F'L.AG' 
o orr : 
o • · ............... . 

1 
•••• E ... ••••••••• o • 

H[TURN • 

DISPLAY. A 5' ' •• 0 

YES .,' - .... I, 

---'. IOFLAG. Oil •• '. .' 
I, .' 

I, .' 
• NO 

1 ·····&5···.·· ... · • CONSTRUCT • 
• ""MELIST • 
• CALLING • 
: SEQUENCE : . ............... . 

1 
: ••• 'C50 0.'0 •••• : 

'GET UNIT NUMBEM' 
• fOR OUTPUT : 

• 0 · ............... . 
1 

: •••• D~""""': 
0-- -NAMt.LI 51"- - - -. 
o OUTPUT , 

1 
• •• IE~' •••••••• · . HETURN 

··;··r~·····i.i .. l · MOVE MESSAGE • 
0' DISI'LAY DUMllll.' 

-->01/0 SJo.I PPI::D' TO' 
, DblJfF'ER ' · , · ............... . 

l ... 0 

'O~ 0 ->: BII 0 0 .... 

Object-Time Library Subprograms 258.7 



Chart G16. IHCOBUG (Part 3 of q) 

START I 0 
: ...... 1 ••••••••• : 

SET CUM EN'r 
AREA FULL 

I 
: •••• 81 ••••••••• : 

• SET IOFLAG TO • 
• INDICATE I/O IN. 
• PROGRES:. • 

I .... ·el·········· .SET CURBYlLC TO. 
• AD 011 ES:, dF • 

LUeAT ION OF • 
FIII!.T MAIN 

• I!l,oCJ( • ................ . 

I · .... 01········· . 
IIETURN • 

258.8 

ENDIO 
: •••• A2 ••••••••• : 

SAVE 10FlJIG • 
INFORMATION : . ................. 
I 

••••• 8.2*·· ••••••• · . • SET 10F . .AG TO • 
• lNABLE FUTURE • 
• DE8U<i C\LLS • · . ........... ..... . 

I ... 
e2 *. • •••• el •••••••••• 

•••• ·----OUTPUT---- • 
• ·ENOIIGH MAIN •• NO • WRITE MESSA<iE • ·0 STORAGE TO • "-------->. 'SOME DEBU<i • 

• 0 SAVF INFO.· .OUTPUT MISSING'. . . . . . '. .' ................ . 
,T" I 

• • '. • ••• 0 J ••••••••• 
• ·INFuIiMATION •• NO. • 

•• !N OLD 10Fl.A~."--------): RETUIIN • 

. . 
.... ~ES 

: :::: :-,1 
: •••• [2 ••••••••• : 

• - - - FREECHAR- - - -. 
- - >. EXTRACT • 

: C""RACTER • .... ....... ..... . 
1 .·0 F'1 '. • •••• F] •••••••••• 

o .f-~Ll. ARRA~· •• YES :I'IOVE FULL ARRAY: ••••• FII •••••••••• 
•• OUTPUT •• ------ -->0 TO DBUFFER .--------)0 RETURN • . . .. . . . . ............. . 

'. .' • NO 

1 
GJ. '. • •••• G) •••••••••• . ' '. . . 

• 0 •• NO .I'IOVE CHAAACTER • 
•• END OF LINE •• --------). TO DI!UFFER • '. . . . . '. . . . . . ............... . 

j
. YES l ..... . 

->: E2 : 

..... H2·········· · . ·----OUTPUT---- • 
• WRITE OUT LINE • · . · ................. 

I ·····J2·········· · . · . ---.UPDATE POINTER • · . · . ................. 



Chart G~.6. 

.... 
'0" • : 81. '--1 

OUTITEM ~ 

IHCOBUG (Part 4 of 4) 

·····81·········· · . 
:M~~fo E8~~fr~~GM: · . · . ••••• II •••••••••• 

1 ee···Cl········.· 
: Arx~T : • u.o~n~ . 
'INTEGER/LOGiCAL' · . ................. 

j 
01'" " . . '. . . '. 

" DATA TYPE " 
'. .' '. . . 

' .. ' 
I 
! 

DATA TYPE I eRI.HCH '1'0 I 

LOG IC.\L I OUT LOG IGrOHI 

INTEGER IOUTFlXlD IGFO~r2 
- - - - - - --- -- ----- - - - ------- -- ---
~ ~~~ ______ ! ~~~~~~~ __ l:~~~~! ___ _ 

t. ~~~:~~: _ ~ ~~~~~~~~ ~ ~~:~~:~~l ___ _ 
(Jun . .oG 

••••• fl •••••• II •• 
• MOVE' F' TO • 
• POINTER TO • 
• INDICATE ZERe • 
• VALUE • 

j 
,', 

Gl . . '. 
YES .' " 

f---· .... ~:~u~:~ ... ,. 
j'" 

:.··.Hl •..•••••• : 
• MOVE 'T' TO 

PourrER 

1 
: •••• Jl ••••••••• : · . -->:UPOATE POIIn'ER : . 
••••• It ••• to •••••• 

J .. . . 
: Rif : 

••••• r2 •••• II II •• 
• -- -OUTFLoAT- -. -. 
• CONVERT • 
'FLOATING-POlln' • 
: AND 1 ""'GI NAMY : ................ . 

1 
•••• 'G2t ••••••• t. · . · . :MOVE TO BurrER : · . ..... ........... . 

J .. . . 
: BII : 

OUTf'IXEO ·····E)·········· · . ·----OUTIH'l'---- • 
• COMVEHT V.\LUE • 
• TO E8COIC • · . ............... .. 

1 .... · . 
: Sli : 

OUTREAL 
• II •• Gl •••••••••• 
• - --OUTrLOAT- - - -. 

:rLOAti~~~INT : 
• AND MOVE TO • 
• OSUP'P'ER • 
•••••••••••• II ••• 

J .. · . 
• S~ • · . 

Appendix F: 

. ... 
'0" • 
• 811 '--1 · . .... 

OUTeur". ·····a .. ·······.·· · . • SAVE RITURN • 
'POlln' AND B"'S! • 
• REGISTER • · . . ............... . 

j 
CII'·o., ••••• es •••••••••• 

•• e. • • 

.;. IO"LAG ON ': .!::----_>;I=~ci¥~LSl8~ :< __ " o· • OUTPUT • .. .' . . '1:0 ....... '1" ...... 
. '. .'. 

D~ " 05 " 
IfO ,.i~o DURIN~'" YES ,.'. .'., 

r

---.' 110 "XXUP " -----., IOrLAG rULL " 
" .' " .' " . . ,, .. 

" .' " .' • YES • MO 

1 ..... J ........ ····E .. ········· . . 'RETURN TO IBCQM'. • 
• rOR ERROR MSG • • GET CHARACTER • · .. . .... ........ ... . . 

. .... , ........... . · . 
• - - --OUTPUT- -- - • -->: PAlin' A LINE • 

· ............. .... 
1 ·····G,,······ .... · . 

:~5r~RfNstix=i :< __ J 
• REGISTER • · . · ............... . 

· ............... . 
I 

: •••• F~""" ••• : 
• - --ALLOCH~----' 
• PUT CHARAI.. TER • 
: IN SAVE AHEA : · ............... . 

j 
G5· .'., . . '. 

':·ENO OF LINE·:.~~-J 
" .' . 

'. .' • YES 

1 
: •••• HSf •••••••• : 

• SET CHARACTER • .,.0 I MOICATE. ENDO 
• or LINE. 0 · . · ............... . 

I · ·.·.JS·········· 0_ - -ALLOCHAR- - - -. 
• PUT NEXT • < ________________ • CHARACTEH IN • 

• SAVE AAEI\ • · . . ............... . 

•••• 1<', •••••••• • 
o • 
: RETURN : ............... 

Object-Time Library Subprograms 258.9 



active character: A significant character 
in the int'erpretation of a source state
ment. Always non-blank except during pars
ing of literal or IBM card code infor
mation. 

ADDR: Contains the address portion of the 
current POP instruction. 

ADDRESS (field): A 2-byte item that is 
part of the pointer (indicating an address 
on a roll) and a driver (indicating the 
forcing strength of an operation). 

ANSWER BOX: 
false answer 
which use 
execution. 

An item used to hold a true or 
for those POP instructions 

or return an answer in their 

BASE: A status variable maintained for 
each roll used by the compiler which con
tains the beginning address of that roll 
minus 4. 

Base Table: A list of absolute'addresses 
from which the object module loads a 
general register prior to accessing data. 

BOTTOM: A status variable maintained for 
each roll which holds the address of the 
last word on the roll containing 
information. 

Branch Table: A list 
address of each branch 
statement function used 
module. 

containing the 
target label and 
in the source 

branch target label: A label which is the 
target of a branch instruction or 
statement. 

Central Items: Another name for SYMBOL 1-3 
and DATA 0-5. 

compiler phase: A program consisting of 
several routines written 1n machine lan
guage and/or POP language; each phase per
forms a well-defined function in the trans
formation of the source module to the 
object module. 

compiler routines: The routines that com
prise each phase of the compiler and which 
may be written in machine language and/or 
POP language. 

CONSTR: Contains the beginning address of 
the data referred to by the compiler 
routines. 

GLOSSARY 

control driver: A driver in Polish nota
tion to indicate types of statements and 
other control functions. 

CRRNT CHAR: Contains the character (from 
the input statement) that 15 currently 
being inspected. 

CRRNT CHAR CNT: Contains the column number 
of the contents of CRRNT CHAR; also called 
the 'scan arrow'. 

DATA 0, 1, 2, 3, 4, 5: Halfword variables 
(except DATA 5, which is two words lonq) 
used to hold constants used in the sourcp 
module and other data. 

error listing: The display of messages 
indicating error conditions detected in the 
processing of the source module. 

EXIT roll: A special roll used by the 
compiler for maintaining exit addresses 
from compiler routines when a POP subrou
tine jump instruction is executed. 

EXTADR: Contains the address of the cur
rent "bottom" of the EXIT roll. 

forcing strength: A value contained in the 
driver which indicates the order of the 
indicated operation (e.g., multiplication 
and division operations precede addition 
and subtraction>. 

global dummy variable: A dummy argument to 
a SUBROUTINE or FUNCTION subprogram. 

global label: A label used ~o define a 
program block. These labels may be 
referred to from any point in the program. 

group: The logical collection of informa
tion maintained on rolls; an entry on a 
roll. 

group size: The number of bytes of infor
mation constituting the group on a roll. 

Group Stats: Information maintained for 
each roll used by the compiler; pertains to 
comparative search operations. 

heading: Initializing instructions re
quired prior to the execution of the. body 
of the object module. 

IEYALL: The system name for the compiler 
phase Allocate. 

Glossary 259 



IEYEXT: The system name for the compiler 
phase Exit. 

IEYFORT: The system name for the compiler 
Invocation phase. 

IEYGE~: The system name for the compiler 
phase Gen. 

IEYPAR: The 
phase Parse. 

system name for the compiler 

IEYROL: The system name for that area of 
the compiler which holds the WORK and EXIT 
rolls and the roll controls and group 
stats. 

IEYUNF: The system name for the compiler 
phase Unify. 

indirect addressing: A method of obtaining 
information held at one location by refer
ring to another location which contains the 
address of the value in question. 

INDIRECT BOX: Used to contain the address 
needed in the indirect addressing operation 
performed by tl)e POP instructions .. 

INSTR: contains the "operation code" por
tion of the current POP instruction. 

item: Synonymous with variable. 

jump: Synonymous with branch. 

keep: Indicates the moving of information 
contained on a roll to another storage 
location and retaining the original infor
mation on the roll. 

LAST CHAR CNT: This item contains the 
column number of the last active character, 
i.e., the active character preceding the 
one currently being inspected. 

local d~~Y~riable: A dummy argument to 
a statement function. 

local label: A label defined within a 
program block which may be referred to only 
within that block. 

MPAC 1, MPAC 2: Two fullword items used by 
the compiler in double-precision arithmetic 
operations. 

NAMELIST Table: A table which holds the 
name, address, etc., for each variable 
listed in a single NAMELIST list in the 
source module. 

operation driver: A l-word variable which 
is an element of Polish notation and indi
cates arithmetic and logical operations 
designated in source module statements. 

260 

OPERATOR (field): A l-byte item that is 
part of the pointer and driver indicating 
the roll used (pointer) or type of o~nr~
tion to be performed (driver). 

optimization: The reduction and re
organization of object code for the 
increased efficiency of the object module. 

PGB2: Contains the beginning address 
the global jump table. 

of 

plex: A variable length group on a roll; 
the first word holds the number of words 
exclusive of itself. 

pointer: This item is one element of 
Polish notation used to indicate references 
to variables or constants; indicates loca
tion of additional information on a roll. 

Polish notation: An intermediate language 
into which the source module is translated 
during processing and generation of the 
object module. 

POPADR: Holds the address of the POP 
instruction presently beinq executed. 

POP instruction: A component part of the 
POP language defined as a macro. 

POP interpreter: A program written in 
machine language for the purpose of execut
ing the POP subroutines; labeled POP SETUP. 

POP jump table: A table used by the POP 
interpreter in transferring control to the 
POP subroutines. Holds addresses of these 
routines. 

POPPGB: Contains the beginning address 
the machine language code for the 
instructions and the POP jump table. 

of 
POP 

POP~OP language: A macro language in 
which most of the compiler is written. 

POP subroutines: The subroutines used by 
the POP interpreter to perform the opera
tions of each POP instruction. 

program text: The object code produced for 
the object module. 

prune, pruni~: A method of removing 
information from a roll, thereby making it 
inaccessible in subsequent operations. 

quote: A sequence of characters preceded 
by a character count; used for comparisons 
with the input data. 

QUOTE BASE: The initial address of the 
first quote (Parse). 



~~sion: A method of call and recall 
employed by the routines and subroutines of 
the compiler whereby routine X may call 
routine Y which, in turn, calls routine X. 

releasing rolls: The 
information reserved on 
for use by the compiler. 

method 
a roll 

of making 
available 

reserve_~ark: The 1-word value placed on a 
roll as a result of a reserve operation. 

reserving rolls: A method of roll manipu
lation whereby information contained on a 
roll remains unaltered reqardless of other 
operations involving the roll. 

RETURN: Contains the return addresses for 
the POP subroutines. 

roll: A type of table used by the compiler 
whose location and size are changed 
dynamically. 

ROLLBR: Contains the beginning address of 
the base table. 

roll control: A term applied collectively 
tothose items used in roll maintenance and 
manipulation. 

roll number: A number 
roll in the compiler 
internal reference. 

assigned to each 
for the purpose of 

roll status items: Those variables main
tainpd-- for each roll which contain the 
statistics needed in roll manipulation. 

~oll_stora1~_area: An area of the compiler 
in main storage that is allocated to the 
rolls. 

rung: 
roll. 

A word of a multiword group on a 

RUNTIME operations: Several routines which 
support object code produced by the com
piler. 

Save Area: An area of the object module 
used in linking to and from subprograms. 

scalar variables: 
ables. 

Nonsubscripted vari-

scan arrow: An item which refe4_ to the 
position of the source statement character 
currently being scanned. 

source module listinq: The display of the 
statements constituting the source module. 

storage allocation: The assignment of main 
storage to variables used in the source 
module. 

stora~map: The logical organization of a 
program or module and its components as 
they are maintained in main storage. (This 
map may also be displayed on an output 
device.) 

SYMBOL 1,2,3: Halfword variables used to 
hold variable names used in the source 
module and other data. 

TAG (field): A 1-byte item that is part of 
the pointer (indicating mode and size of 
the object pointed to) and driver (indicat
ing mode of operation). 

temporary stor~~: An area of main storage 
used by the compiler to temporarily main
tain information for subsequent use. 

terminal errors: Errors internal to the 
compiler causing termination of compilation 
of the source module. 

TOP: A status variable maintained for each 
roll which indicates the new BASE of the 
roll when reserved information is contained 
on the roll. 

traits: The TAG field (uppermost byte) of 
a word on a roll. 

translation: The conversion from one type 
of language to another. 

WORK roll: A special roll used by the 
compiler for maintaining values temporarily 
during processing. 

WRKADR: The address maintained for the 
WORK roll that indicates the last word into 
which information has been stored; the 
"bottom" of the roll. 

WO,W1,W2, •••• : Acronyms used to refer to 
the last groups of the WORK roll. 

Glossary 261 



(Where more than one page reference is given, the major reference appears first.) 

active characters 
definition 259 
description 26 

~CTJVE END STA XLATE routine 14~39 
active statements 36,39 
ADCON roll 57,145 
ADDR register 

definition 259 
descI~ption 29 

address computation instructions 134,135 
cross-reference list 139 

address constants 11,20,52,56,51 
,l\DDRESS field 

definit:ion 258 
description 29-30 

address inq 
indirect 136,259 
relative 29,138 

ADR CONST roll 
de~crip~ion 1~9 

in Exit 56 
in Unify 52 

A F'fER POLISH roll 
Jt'c-.;cription 23,161 
in Ct'll r)J,54 
in Parse 31-40,42 

Allocate label lists 193-196 
Allocate phas(> (IEYALL) 

('d rd" produced ') 1 
ctctiiiit.icr~ 2SR 
detiii led de~;cription 44-51 
yeneral description 12 
loC,ltion in !:;toraqe 17 
roll:; used hy 44 
~;\lbprogram list ')1 

allocation of main storaqe 28 
ALTER OPTION TABLE routine 232 
AI.LOCA'l'l()N FAIL routine 42 
ALPHA LBL AND L SPROG routine 14,45 
ALPHA SCALAR ARRAY AND SPR(x; routinp' 14,45 
ANSWER BOX variable 

definition 2')8 
description 26 
in Parse 38 

AREA CODE variable 45,55,51,146 
arithmetic and logical instructions 

130,131,139 
array 

description 18 
dummy 47,48 
in Allocate 48,49 
listing of 21 
position in Object module 11 
roll 26,47,146 

.",FRAY ALLOCATE routine 14,45,41 
ARRAY DIMENSION roll 150 

ARRAY PLEX roll 158 
ARRAY REF roll 52,159 
ARRAY REF ROLL ALLOTMENT 14,52 
ARAY REF ROLL ALLOTMENT routine 52 
A..~RAY roll 

aSSigning storage for 47 
description 146 
group stats for 25 

~rtificial drivers 40 
ASSIGNMENT STA GEN routine 54 
AT roll 54,159 

base addresses 28 
BASE AND BRANCH TABLE ALLOC routine 
14,45,47 

B/\SE, BOTTOfo"., aWl TOP tables 23 w 28 
base table 

~csiqninq sturaqe [or 47 
definition 259 
(le~~cription 17 
I;i): it ion HI ob;ect module 11 
use in Allocate 48 
use in Exit 57 

BASE TABU' roll 
ripscription 14b 
1n Allocate 4~-4B 
]Tl Fxit_ 1)6 

BA:;E v~riablf' ~.~ 

definition 259 
peD roll 4') 
HLUCK nATA PROt; I\LLOCATION routine 14,46 
BLOCK DATA subprugram 

allocation for 46 
Parse processing of 19 

ROTTOM varidble 21 
dpfinition 259 

branch table 
assigning sto~age for 47 
de~,criptinn 18 
position in object module 11 
use in Allocate 47 
use in Exit ')6 

BRANCH TABLE roll 
description 150 
in Allocate 47 
in Exit 56 

branch target label 12,18 
BUILD ADDITIONAL BASES routine 14,45,49 
BUILD NAMELIST TABLE routine 14,45,48 
BUILD PROGRAM ESD routine 14,45,46 
BYTE SCALAR roll 41,151 

Index 263 



CALCULATE BASE AND DISP routine 14,45 
CALL LBL roll 149 
central it~ms 

DATA L4,192,259 
definitlon 259 
description 24 
SYMBOL 24,191,259 

CGOTO STA XLATE routine 38 
character scanning 26-27 
code producing instructions 134 
'CODE roll 

description 160 
in Exit 56 
in Gen 53,54 
location 22 

COMMON ALLOCAT!ON AND OUTPUT routine 
14,45,47 

COMMON ALLOCATION 
COMMON AREA roll 
COMMON data 12 
COMMON DATA roll 
COMMON DATA TEMP 
COMMON NAME roll 
COMMON NAME TEMP 
COMMON statements 

roll 
155 

152 
roll 

152 
roll 

allocation for 45 
COMMON variables 

47,156 

155 

156 

allocation of storage for 45 
listing of 21 

compiler 
arrangement 28-29 
assembly and operation of 136 
code produced by 175-183 
data structures 22 
design of 9 
flags used 27 
general register usage 28 
initialization of 33 
limitations of 9 
machine configuration for 9 
messages 21 
organization of 10,14 
output fre·m 16 
purpose ot 9 
receiving control 33 
relationship to system 19 
rolls used in 140-162 
storage configuration 15 
termination of 33,35 

COMPLEX CONST roll 143 
CONSTR register 

definition 259 
description 28 

control block area (CTLBLK) 227 
control driver 

definition 259 
description 31 
formats of 185-211 

CONVERT TO ADR CONST routine 14,52 
CONVERT TO INST FORMAT routine 14,52 
CRRNT CHAR CNT variable 

definition 259 
description 26 
in Parse 38 

CRRNT CHAR variable 
definition 259 
description 26 
in Parse 38 

264 

data items 24,192,259 
DATA SAVE roll 145 
data sets 

SYSIN 15,33 
SYSLIN 15,33 
SYSPRINT 15,33 
SYSPUNCH 15,33 

DATA statements 
allocation for 45 

DATA VAR roll 56,154 
DDNAMES routine 35 
DEBUG ALLOCATE routine 14,45,49 
decision making instructions 131,132 
DECK option 51 
DIMENSION statement 

allocation for 46 
variables specified on 29 

DISPLAY statement 
NAMELIST table for 18,19 

DMY DIMENSION roll 14,46,147 
DO loops 

in Allocate 46 
in Parse 39 
in Gen 55 
in Unify 12,51,52,53 

DO LOOPS OPEN roll 
description 144 
in Allocation 46 
in Parse 39 

DO LOOP UNIFY routine 53 
DO NEST UNIFY 14,53 
DO STA XLATE routine 38 
DP COMPLEX CONST roll 143 
DP CONST roll 

description 143 
general 25 

drivers 
ADDRESS field 30 
artificial 40 
control 31,185-211,259 
definition of 30 
EOE 40,41 
formats of 185-211 
operation 30,260 
OPERATOR field 30 
plus and below phony 40,41 
TAG field 30 

dummy array 46,47 
dummy dimension 46 

END card 13 
omission of 39 
produced by Exit 57 

END STA GEN routine 54,55 
ENTRY CODE GEN routine 14,53,54 
ENTRY NAME ALLOCATION routine 14,45,46 
ENTRY NAMES roll 54,147 
ENTRY roll 46 
EOE driver 40,41 
EPILOGUE GEN routine 14,53,54 
epilogues 12,53,54 
EQUIV ALLOCATION PRINT ERRORS routine 
14,45,41 

EQUIV MAP routine 14,45,48 
EQUIVALENCE (EQUIV) ALLOCATION roll 



41,48,156 
EQUIVALENCE (EQUIV) HOLD 
EQUIVALENCE (EQUIV) roll 
EQUIVALENCE (EQUIV) TEMP 
EQUIVALENCE OFFSET roll 
EQUIVALENCE statements 
EQUIVALENCE variables 

roll 145 
46 4 41:151 

roll 145 
45,152 

12,45 

allocation of storage for 
description 18 

45 

listing of 21 
map of 48 
position in object module 

EREXITPR routine 34 
ERROR CHAR roll 144 
ERROR LBL roll 148 
ERROR MESSAGE roll 144 
error messages 21 
error recording 42 
ERROR roll 42,148 
errors 

detection of 42 
recording of 21,42 

ERROR SYMBOL roll 149 
ERROR TEMP roll 144 
ESD cards 

general 12 

11 

produced by allocate 
Exit label list 208-211 
EXIT PASS routine 14,55 
Exit phase (IEYEXT) 

44,41,51 

definition 259 
detailed description 
general description 
location in storage 
rolls used by 55 

exit roll 
definitlon 259 
description 24,161 
general 10 
in IEYROL 53 
in Parse 38 
location in storage 

EXPLICIT roll 149 
EXTADR register 

definition 259 
description 29 

55-58 
13 
15 

15 

extended error handling facility 232,212 

FL AC roll 153 
FL CONST roll 143 
flags 21 
forcing strength 

definition 259 
description 30,31 
in Parse 40 
table 31 

FORMAT ALLOCATION routine 14,45,48 
FORMAT roll 48,151 
FO~~T statements 

description 20 
in Allocate 12,44,48 
listing of 21 
position in object module 11 

FORTRAN error routine (IHCIBERH) 42,228 

FULL WORD SCALAR roll 41,155 
FUNCTION subprogram 46,49 
FX AC roll 151 
FX CONST roll 143 

Gen label list 198-208 
Gen phase (IEYGEN) 

definition 259 
detailed description 53-55 
general description 12 
location in sto!age 15 
rolls used by 53 

GEN PROCESS routine 14,53 
GENERAL ALLOCATION roll 160 
general register usage 

used by compiler 28-29 
used by object module 20 

GET POLISH routine 14,53,54 
global area 136 
GLOBAL DMY roll 41,49,148 
global jump table 28,131,138 
global jumps 131,138 
global label 136,131,259. 
GLOBAL SPROG ALLOCATE routine 14,45,48 
GLOBAL SPROG roll 

description 142 
general 42 
in Allocate 48 
in Exit 5b 

(;0 TO STA GEN routine 55 
GO TO statements, processing of 54,55 
qrollp 

definition 259 
description 24,25 

group stats 
definition 25,259 
description 26 
iocatlon ln storage 15 
~;izes 2') 

group stats table 26 

HALF WORD SCALAR roll 41,152 
heading 

position in object module 11 
HEADOPT routine 35 
HEX CONST roll 154 

IBEXIT routine 239 
IBFINT routine 215 
IEYALL (see Allocate phase) 
IEYEXT (see Exit phase) 
IEYFINAL routine 35 
IEYFORT (see Invocation phase) 
IEYGEN (see Gen phase) 
IEYJUN subroutine 138 
IEYMOR routine 34 

Index 265 



IEYPAR (see Parse phase) 
IEYPCH routine 34 
IEYPRNT routine 33 
IEYREAD routine 34 
IE'.-RETN routine 35 
IFYROL (see roll module) 
IEYUNF (see Unify phase) 
IF statement 37,18,3 Q 

IHCADJST 229-230,249 
IHCDBUG 236-239,258.6 
IHCDIOSE 224-226,245 
IHCECOMH (see IHCFCOMHlIHCECOMH) 
IHCEDIOS 224-226,245 
IHCEFIOS 218-224,244 
IHCEFNTH 229-230,248 
IHCERRM 233,253 
IHCETRCH 233,258 
IHCFCOMH/IHCECOMH 

flnwchart 241 
initialization operations 215 
input/output opprations 218-226,227-228 
termination opprations 219 
transf~r and subroutine table 242.3 

IHCFCVTH 234 
I IlCFDIIMP 
IH<'FDVCH 
I HCFEXIT 
IHCFINTH 
IHCFIOSB 

2 1 r) - 2 3 6, 2 ') 8. 1 
234,258.S 
23S, 2')8. 2 
229-210,24A 
218-224,244 

I i1 C' FO ;:'1' 2 3 2 - 2 ~ ], 2 ') 5 
IHrf'UVER 235,258.4 
IHCF~;LIT 23~, 2:>8. 3 
IHCIBFRH 228-229,250 
IIICNAMEL 226-221,241 
I H C ~~ T A E 2 31 , 2 51 
IHCTRCH 210-231,258 
IHClJATBL 239 
IHCUOPT 242.1-242.3 
IMPLICIT roll 153 
indirect addressing 135,260 
indirect addressing instruction 135 
IND VAR roll 

dp~;cr ipt ion 141 
i n par~je 31 

INIT roll 49,145 
Invocation phase (IEYFORT) 

definition 260 
detailed description 33-36 
general description 12 
location in storage 15 

jump instructions 132,133 

keep 
definition 260 
general 23 

label lists 
Allocate 193-196 

266 

Exit 20R-211 
Gen 198-208 
Parse 185-193 
Unify 196-198 

labeled statement references 12 
labels 

branch target 12,18 
detailed description 135,136 
global 135,136 
local 135,136 
mode 17,54 

LAST CHAR CNT variable 
definition 259 
description 26 
in Parse 38 

LAST SOURCE CHAR variable 38 
LBL FIELD XLATE routine 14,37,38 
LBL process routine 14,53,54 
LBL roll 45,46,54,153 
LEVEL ONE UNIFY routine 53 
LIB roll 140 
LITERAL CONST ALLOCATION routine 14,45,41 
literal constants 

description 20 
in Allocate 12,44,45 
position in object module 17 

LITERAL CONST roll 143 
LITERAL TEMP (TEMP LITERAL) roll 155 
LOAD and DECK options 33 
LOCAL, DMY roll 148 
local label 136,131,259 
LOCAL SPROr, roll 45,46,149 
Lo<aCAL IF STA XLATE routine 38 
LOOP CONTROL roll 52,156 
LOOP DATA roll 

description 157 
in Parse 38 
in Unify 53 

LOOP SCRIPT roll 142 

made labels 11,54 
map 

of scalars 47 
storage 21,44,50,260 

MAP option 51 
messages 

description 21 
location in storage 15 
printing of (IEYPRNT) 33 
produced by Allocate 48,49 
produced by Invocation 35,36 
produced by Parse 43,44 

minimum system configuration 9 
MOVE ZEROS TO T AND C routine 14 
MPAC1 and MPAC2 variables 

definition 259 
description 26 

multiple precision arithmetic 26 

NAMELIST ALLOCATION roll 48,49,155 
NAMELIST ITEMS roll 149,150 



NAMELIST MPY DATA roll 51,160 
NAMELIST name 

roll 48 
table for 19 

NAMELIST NAMES roll 48,149 
NAMELIST tables 

definition 259 
description 19 
in Allocate 12,44,41 
in Exit 57 
listing of 20,48 
position in object module 20 

NEST SCRIPT roll 
description 141 
in Ur.ity 53 

NON~TD SCRIPT roll 141 

oblf'ct module 
cont iq 11ration of 17 
dp,;Cl iption of 11 
qpneral register usage 20 
1 i 5 t i ng 0 f 20, 21, 54, 51 
writing of 49 

oiJject--time library subprograms 212-258.10 
operation driver 

definition 259 
description 
t nrmd ts of 

UFERATI)R fipld 

30 
185-211 

'i p f 1 nit ion 2 59 
d~~cription 30-32 

optImization 52,53,259 
option table 242.1 
ORDER AND PUNCH RLD ROLL routine 14,55,51 

Pa ro; f> pha~)e (I EY PAR) 
definition 260 
rtetdiled description 36-42 
general description 12 
l()cdtion in storage 15 
rolls used by 31 

PAS;' 1 (;LOBAL ~PROG ALLOCATE routine 
14,4C.,,48 

pha ~>t·~; 
.:'.llocdte 12,15,44-51 
components of 14 
Exit 13,15,55-51 
Gen 12,15,53-55 
Invocation 12,15,33-]5 
Parse 12,15,36-44 
Unify 12,15,51-53 

plex 
definition 260 
description 25 

plus and below phony driver 40,41 
pOintEr 

ADDRESS field 29 
definition 260 
description 29 
OPERATOR field 29 
TAG field 29 

Polish notation 
arithmetic and logical assignment 

statement 164 
arithmetic expressions 39 
arithmetic IF statement 165 
array references 163 
ASSIGN statement 164 
assigned GO TO statement 164 
BACKSPACE statement 171 
BLOCK DATA statement 166 
CALL statement 172 
computed GO TO statement 165 
CONTINUE statement 165 
DATA statement 166 
debug statements 172-173 
DEFINE FILE statement 110 
1efinitlon of 259 
direct-access statements 110 
DO statement 16~ 

END FILE statement 171 
END statement 166 
ENTRY statement 164 
Explicit specification statements 
FIND stdtpm~nt 170 
form-':lt~; 163-173 
FUNCTION "tritpment 111 
generdl 1 () 
i n ( ; ,-' n 1 2, :) J, ') 4 
in I'dr:if' 13, 3b, 1C} 
1 n put / () U t P \l t 1 i : it:; 1 6 7 -1 6 8 
IdUf>lpc1 ~;tdtpments 162 
loqicdl l~' :;tdtJ:'mpnt 164 
l'ALJ:,t: dlld :~T()P "tatements 165 
P R I NT :, t d t f' fTH' n t 1 b 9 
l' {J Nt" II ~; l ri t f' fTlf' n t 1 h <} 
HEAr) :;t_dtf'fTlI'nt Ih7,lb8,169 
RETllRN ~itdt{'mf-'nt 164 
HEWIND :;tatf'mf"nt 171 
statf'mf'nt f\lnction 171 
SUllRUilTINE ,;tatpment 171 
uncoIlc11tinnrll (jO TO statement 165 
WRITE :~tiltr'rnf'nt lhR,lh<},170 

PO Pin s t r 11C t ion ~; 
ADD 1 J 0 
AF'~) 1 10 
AND 1 3lJ 
APH 127 
ARK 12"1 
M<P 127 
A~~K 127 
ASP 127 
BID 1 J{~ 
BIM 1 34 
BIN 1 ~t~ 
BOP 127 
CAR 128 
CLA 128 
CNT 128 
CPO 128 
cross reference list 139 
CRP 128 
CSA 131 
CSF 133 
definition 259 
detailed description 121-135 
DIM 130 
DIV 130 
EAD 128 

166 

Index 261 



EAW 128 
ECW 128 
EOP 128 
ETA 128 
FET 128 
FLP 128 
FRK 128 
FRP 128 
FTH 128 
generdl description 10 
lAD 129 
IND 115 
lor 129 
lOR 130 
ITA 129 
ITM 129 
JAF 133 
JAT 133 
JOW 133 
JPE 133 
JRD 133 
JSR 133 
,) UN 133 
LCE 129 
LCF 129 
LCT 129 
LGA 131 
LGP 129 
LLS 130 
LRS 131 
LSS 129 
MOA 131 
MOC 129 
MON 129 
MPY 131 
NOG 129 
NOZ 129 
PGO 130 
PGP 130 
PLD 1 JO 
PNG 130 
POC 130 
pow 134 
PSP 131 
PST 130 
QSA 131 
QSF 133 
REL 134 
RSV 13q 
SAD 131 
SBP 131 
SBS 131 
SCE 132 
SCK 112 
SFP 132 
SLE 132 
SNE 132 
SNZ 132 
SOP 132 
SPM 132 
SPT 132 
SRA 132 
SRD 132 
STA 132 
STM 133 
SUB 131 
SWT 130 
TLY 131 

268 

wop 135 
W1P 135 
W2P 135 
W)P 135 
W4P 135 
XIT 133 
ZER 130 

POP interpreter 
definition 260 
description 136 
general 10 

POP jump table (POPTABLE) 
definition 260 
description 28,137 
location in storage 15 

POP language 
cross-reference list 139 
definition 260 
detailed description 127-138 
general description 10 
notation used 127 

POP SETUP routine 137 
POP subroutines 

assembler references to 137 
definition 260 
general 10 
location in storage 15 

POPADR register 
definition 260 
description 29 

POPPGB register 
definition 260 
description 29 

POPXIT register 
description 29 

PREP DMY DIMAND PRINT ERRORS routine 14,45 
PREP EQUIV AND PRINT ERRORS routine 14,45 
PREP NAMELIST routine 14,45,48 
PRESS MEMORY 21,22,19J 
PRINT A LINE routine 14 
PRINT AND READ SOURCE routine 14,37 
PRINT HEADING routine 14 
PRINT TOTAL PROG REQMTS MESS routine 14 
printmsg table 35-36 
PRNTHEAD routine )4 
PRNTMSG routine 3l\ 

PROCESS DO LOOPS routine 14,45,46 
PROCESS LBL AND LOCAL SPROGS routine 
14,45,46 

PROCESS POLISH routine 14,39 
production of object code 

branches 175 
computed GO TO statement 175 
DEFINE FILE statement 179 
direct-access READ and WRITE statements 

179 
DO loops 175 
DO statement 175 
FIND statements 179 
FORMAT statements 180,181 
formatted arrays 177 
formatted list items 177 
functions 176 
input/output 177 
PAUSE statement 179 
READ and WRITE statements 177 
statement functions 176 
STOP statement 179 



subroutines 176 
unformatted arrays 178 
unformatted READ and WRITE statements 

178 
PROGRAM BREAK variable 45,46,47,48,49 
PROGRAM SCRIPT roll 

description 158 
in Parse 39 
in Unify 52 

program text 
definition 260 
description 20 
position in object module 17 

prologue 12,53,54 
PROLOGUE GEN routine 14,53,54 
pruning 

definition 260 
description 23 

pseudo instructions 10,127 
PUNCH ADCON ROLL routine 14,55,57 
PUNCH ADR CONST ROLL routine 14,55,56 
PUNCH BASE ROLL routine 14,55,56 
PUNCH BRANCH ROLL routine 14,55,56 
PUNCH CODE ROLL routine 14,55,56 
PUNCH END CARD routine 14,55,57 
PUNCH GLOBAL SPROG ROLL routine 14,55,57 
PUNCH NAMELIST MPY DATA routine 55,57 
PUNCH PARTIAL TXT CARD routine 55,56 
PUNCH SPROG ARG ROLL routine 14,55,56 
PUNCH TEMP AND CONST ROLL routine 14,55,56 
PUNCH USED LIBRARY ROLL routine 14,55,51 

quick link output 136 
quote 

definition 260 
description 27 
location in storage 15 
QBASE 21 

quote base (QBASE) 
\iefinition 260 
oescription 27 

REASSIGN MEMORY 185 
recursion 

definition 261 
in compiler 10 

REG roll 146 
REGISTER IBCOM routine 14,31 
register usage 

by compiler 28 
by Object module 

relative addressing 
releasing rolls 

definition 261 
in Allocate 45 
in Invocation 35 

reserve mark 
definition 261 
description 23 

RETURN register 
definition 261 
description 29 

RETURN statement 

20 
29,137 

Polish notation for 37 

RLD cards 13,56 
RLD roll 55,56,57,156 
ROLL ADR table 

in IEYROL 53 
in Invocation 35 
location in storage 15 
use in allocating storage 22,35 
use in finding address of variable, 30 
use in releasing storage 35 

roll control instructions 133 
roll controls 

general 21 
roll module (IEYROL) 

definition ?';1 

detailed description 53 
general description 13 
location in storage 15 

roll statistics 
BASE, BOTTOM, TOP 22 
location in storage 15 

roll storage area 
definition 261 
general description 21 

ROLLBR register 
definition 261 
description 29 

rolls 
ADCON 51,145 
ADR CONST 52,56,159 
AFTER POLISH 23,31-40,42,53,54,161 
allocating storage for 21,22,34 
ARRAY 2b,47,146 
ARRAY DIMENSION 1S0 
ARRAY PLEX 158 
ARRAY REF 52,159 
AT ')4,159 
BASE TABLE 45-48,56,146 
BCD 45 
BRANCH TABLE 41,56,150 
BYTE SCALAR 41,151 
CALL LBL 149 
cuD~ 22,5],S4,~b,160 

COMMON ALLOCATION 41,156 
COMMON AREA 155 
COMMON DATA 152 
COMMON DATA TEMP 155 
COMMON NAME 152 
COMMON NAME TEMP 156 
COMPLEX CONST 143 
DATA SAVE 145 
DATA VAR 56,154 
definition of 261 
detailed description 140-162 
DMY DIMENSION 14,46,141 
DO LOOPS OPEN 39,46,144 
DP COMPLEX CONST 143 
DP CONST 25,143 
ENTRY 46 
ENTRY NAMES 54,141 
EQUIV ALLOCATION 43,41,48,156 
EQUIVALENCE (EQUJV) 46,47,151 
EQUIVALENCE (EQUIV) HOLD 145 
EQUIVALENCE (EQUIV) TEMP 145 
EQUIVALENCE OFFSET 45,152 
ERROR 42,148 
ERROR CHAR 144 
ERROR LBL 148 
ERROR MESSAGE 144 

Index 269 



ERROR SYMBOL 149 
ERROR TEMP 144 
EXIT 10,15,24,38,53,161,259 
EXPLICIT 149 
FL AC 153 
FL CONST 143 
FORMAT 48,151 
formats 140-162 
FULL WORD SCALAR 41,155 
FX AC 151 
FX CONST 143 
GENERAL ALLOCATION 160 
general description 10,21 
GLOBAL DMY 41,49,148 
GLOBAL SPROG 42,48,56,142 
HALF WORD SCALAR 41,152 
HEX CONST 154 
H1PLICIT 153 
IND VAR 31,141 
INIT 49,145 
LRL 45,46,54,153 
LIB 140 
LITERAL CONST 143 
LITERAL TEMP 155 
LOCAL DMY 148 
LOCAL SPROG 45,46,149 
location in storage 15 
LOOP CONTROL 52,156 
LOOP DATA 38,53,151 
LOOP SCRIPT 142 
NAMELIST ALLOCATION 48,49,155 
NAMELI~;T ITEMS 149,150 
NAMELIST MPY DATA 57,160 
NAMELIST NAMES 48,149 
NEST SCRIPT 53,141 
NONSTD SCRIPT 141 
POLISH 36-42,53,54 
PROGRAM SCRIPT 39,52,158 
pruning of 23 
REG 146 
rpleasing of 35,45i260 
reserving of 23,261 
RLD 55,56,57,156 
SCALAR 47,48,154 
SCRIPT 36,31,52,53,151 
size limitations 22 
SOURCE 31,38,140 
special 24 
SPRaG ARG 56,141 
STD SCRIPT 144 
SlJBCHK 49,160 
TEMP 144 
TEMP AND CONST 45,55,51,144 
TEMP DATA NAME 150 
TEMP NAME 36,143 
TEMP POLISH 151 
TEMP PNTR 153 
used by Allocate 44 
used by Exit 55 
used by Gen 53 
used by Parse 36 
used by Unify 52 
USED LIB FUNCTION 48,55,152 
WORK 10,15,24,38-41,53,54,161,261 

rungs 

270 

definition 261 
description 24 

save area 
assigning storage for 41 
definition 261 
position in object module 17 

SCALAR ALLOCATE routine 14,45,41 
SCALAR roll 41,48,154 
SCALAR routine 14 
scalar variable 

definition 261 
listing of 21 
position in object module 17 

scan arrow 
definition 261 
description 26 

scan control variables 26,27 
SCRIPT roll 

description 151 
in Parse 36,37 
in Unify 52,53 

source module listing 
definition 261 
description 20,U2 
format of 42 

SOURCE option 36 
SOURCE roll 

description 140 
in Parse 37,38 

special rolls 24 
specification statements 35 
SPROG ARG ALLOCATION routine 14,45,48 
SPROG ARG roll 56,147 
STA FINAL routine 14,31,39 
STA GEN FINISH routine 14,54,55 
STA GEN routine 14,54,55 
STA INIT routine 14,38 
STA LBL BOX 54 
STA RUN TABLE 54 
STA XLATE EXIT routine 38 
STA XLATE routine 14,31,38,39 
START ALLOCATION routine 14 
START COMPILER routine 14,37 
START GEN routine 14,53 
START UNIFY routine 14,52 
STATE~£NT PROCESS routine 14,31,39 
status variable 23 
STD SCRIPT roll 144 
STOP statement 

Polish notation for 37 
storage map 

compiler 14 
definition 261 
description 21 
object module 11 
produced by Allocate 44,50 

SUBCHK roll 49,160 
subprogram addresses 

position in object module 17 
subprogram argument lists 

position in object module 17,51 
SUBSCRIPTS FAIL routine 42 
SYMBOL item 24,261 
syntax error 42 
SYNTAX FAIL routine 38,42 
system names 11 



tables 
base 17,47,56,259 
BASE, BOTTOM, and TOP 23,28 
branch 18,46,56 
global jump 28,137 
group stats 25,26 
NAMELIST 12,18,19,20,44,48,49,57,260 
POP jump 15,28,136,260 
printmsq 35 
ROLL ADR 15,22,28,34,53 
STA RUN 54 
unit assignment 239 

TAG field 
definition 261 
description 29-31 

TEMP AND CONST roll 
description 144 
in Allocate 45 
in Exit 55,57 

TEMP DATA NAME roll 150 
TEMP NAME roll 

description 143 
in Parse 38 

TEMP POLISH roll 151 
TEMP PNTR roll 153 
TH1P roll 144 
tpmpordry storage and constants 

description 20 
position in object module 17 

TERMINATE PHASE routine 54,55 
tf-'rr'1indtion of compiler 33,35 
TIMUJAT rOlltine 35 
TOl-' var idole 23 

lefinition 261 
TRACE nption ~4 

transmi~~ive instructions 127-130 
TXT card~> 

general 12 
produced by Allocate 44,49,51 
produced by Exit 55,56,57,58 

tVDP strltpmpnts 
A' allocation for 46 

Unify label list 196-198 
Unify phase (IEYUNF) 

definition 260 
detailed description 51-53 
general description 12 
location in storage 15 
rolls used by 52 

unit assignment table (IHCUATBL) 239 
unit blocks 240,242 
USED LIB FUNCTION roll 

description 152 
in allocation 48 
in Exit 55 

variables 
ANSWER BOX 26,38,259 
AREA CODE 45,56,51,146 
BASE 23,259 
BOTTOM 23,259 
COMMON 21,46 
CRRNT CHAR 26,38,259 
CRRNT CHAR CNT 26,38,259 
EQUIVALENCE 18,21,44,45,48 
LAST CHAR CNT 26,38,260 
LAST SOURCE CHAR 38 
MPAC1 and MPAC2 26,260 
PROGRAM BREAK 45,46,47,48 
scalar 18,21,261 
scan control 26,27 
status 23 
TOP 23,261 

WORK roll 
definition 
description 
general 10 
in Exit 57 
in Gen 54 
in IEYROL 

261 
24,161 

in Parse 39,40,41 
location in storage 15 

WRKADR register 
definition 261 
description 29 

Index 211 



GY28-6638-2 
... ) '> 
'~ ... ~ ~ 

Internatlanal BUlinll1 Machinll Carparatlan 
Data Pracilling DiYilian 
1133 Wlltchlltlr AVlnul, White Plalnl, Nlw Yark 10604 
[U.S.A. anly) 

IBM Warld Tradl Carparatlan 
821 Unitld Natlanl Pla.a, Nlw Yark, New Yark 10017 
[Intlrnltlanal) 

GJ 
t-< 
N 
co 
I 

0"1 
0"1 
W 
co 
I 

N 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036.0
	036.1
	037
	038.0
	038.1
	039
	040
	041
	042
	043
	044.0
	044.1
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067.0
	067.1
	068
	069
	070.0
	070.1
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146.0
	146.1
	147
	148
	149
	150
	151
	152
	153
	154.0
	154.1
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	175
	176.0
	176.1
	177
	178
	179
	180
	181
	182
	183
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242.0
	242.1
	242.2
	242.3
	243.0
	243.1
	243.2
	243.3
	244.0
	244.1
	245.0
	245.1
	245.2
	245.3
	246
	247
	248.0
	248.1
	248.2
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258.0
	258.1
	258.2
	258.3
	258.4
	258.5
	258.6
	258.7
	258.8
	258.9
	259
	260
	261
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272

